Startseite The structure of the juvenile hormone binding protein gene from Galleria mellonella
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The structure of the juvenile hormone binding protein gene from Galleria mellonella

  • Agnieszka J. Sok , Kamila Czajewska , Andrzej Ożyhar und Marian Kochman
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 386 Heft 1

Abstract

Juvenile hormone (JH) and ecdysone are the key hormones controlling insect growth and development. The juvenile hormone binding protein (JHBP) is the first member in the array of proteins participating in JH signal transmission. In the present report a whole jhbp gene sequence (9790 bp) is described. The jhbp gene contains four introns (A–D). All the introns have common flanking sequences: GT at the 5′ and AG at the 3′ end. The first intron is in phase 1, the second in phase 2, and the third and fourth in phase 1. An analysis of these sequences suggests that U2-class spliceosomes are involved in intron excision from pre-mRNA. Several horizontally transmitted elements from other genes were found in the introns. All jhbp exons are positioned in local AT-reach regions of the gene. A search for core promoter regulatory elements revealed that the TATA box starts 29 bp preceding the start of transcription; the sequence TCAGTA representing a putative initiator sequence (Inr) starts at position +14. Eight characteristic sequences for binding Broad-Complex gene products, which coordinate the ecdysone temporal response, are present in the non-coding sequence of the jhbp gene. An analysis of exon locations and intron phases indicates that jhbp gene organization is related to the retinol binding protein gene, a member of the lipocalin family.

:

Corresponding author

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.17, 3389–3402.10.1093/nar/25.17.3389Suche in Google Scholar

Breathnach, R. and Chambon, P. (1981). Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem.50, 349–383.10.1146/annurev.bi.50.070181.002025Suche in Google Scholar

Breathnach, R., Benoist, C., O'Hare, K., Gannon, F., and Chambon, P. (1978). Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA75, 4853–4857.10.1073/pnas.75.10.4853Suche in Google Scholar

Butler, J.E. and Kadonaga, J.T. (2002). The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev.16, 2583–2592.10.1101/gad.1026202Suche in Google Scholar

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem.162, 156–159.10.1016/0003-2697(87)90021-2Suche in Google Scholar

Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C., and Chambon, P. (1980). Promoter sequences of eukaryotic protein-coding genes. Science209, 1406–1414.10.1126/science.6251548Suche in Google Scholar PubMed

Cymborowski, B. (1984). Endokrynologia owadów (Warszawa, Poland: Państwowe Wydawnictwa Naukowe).Suche in Google Scholar

de Souza, S.J., Long, M., Schoenbach, L., Roy, S.W., and Gilbert, W. (1996). Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA93, 14632–14636.10.1073/pnas.93.25.14632Suche in Google Scholar PubMed PubMed Central

de Souza, S.J., Long, M., Klein, R.J., Roy, S., Lin, S., and Gilbert, W. (1998). Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA95, 5094–5099.10.1073/pnas.95.9.5094Suche in Google Scholar PubMed PubMed Central

Dębski, J., Wysłouch-Cieszyńska, A., Dadlez, M., Grzelak, K., Kłudkiewicz, B., Kołodziejczyk, R., Lalik, A., Ożyhar, A., and Kochman, M. (2004). Position of disulfide bonds and N-glycosylation site in juvenile hormone binding protein. Arch. Biochem. Biophys.421, 260–266.10.1016/j.abb.2003.10.019Suche in Google Scholar PubMed

Duk, M., Krotkiewski, H., Forest, E., Rodriguez Parkitna, J.M., Kochman, M., and Lisowska, E. (1996). Evidence for glycosylation of the juvenile-hormone-binding protein from Galleria mellonella hemolymph. Eur. J. Biochem.242, 741–746.10.1111/j.1432-1033.1996.0741r.xSuche in Google Scholar PubMed

Gilbert, L.I., Granger, N.A., and Roe, R.M. (2000). The juvenile hormones: historical facts and speculations on future research directions. Insect Biochem. Mol. Biol.30, 617–644.10.1016/S0965-1748(00)00034-5Suche in Google Scholar

Gilbert, W. (1987). The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol.52, 901–905.10.1101/SQB.1987.052.01.098Suche in Google Scholar

Go, M. (1981). Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature291, 90–92.10.1038/291090a0Suche in Google Scholar

Goldberg, M.L. (1979). Sequence Analysis of Drosophila Histone Genes (Stanford, CA, USA: Stanford University).Suche in Google Scholar

Hall, S.L. and Padgett, R.A. (1994). Conserved sequence in a class of rare eucaryotic nuclear introns with non-consensus splice sites. J. Mol. Biol.239, 357–365.10.1006/jmbi.1994.1377Suche in Google Scholar

Hidayat, P. and Goodman, W.G. (1994). Juvenile hormone and hemolymph juvenile hormone binding protein titers and their interaction in the hemolymph of fourth stadium Manduca sexta. Insect Biochem. Mol. Biol.24, 709–715.10.1016/0965-1748(94)90058-2Suche in Google Scholar

Hultmark, D., Klemenz, R., and Gehring, W.J. (1986). Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell44, 429–438.10.1016/0092-8674(86)90464-2Suche in Google Scholar

Hutchinson, F. (1996). Mutagenesis. In: Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, F.C. Neidhardt, ed. (Washington, DC, USA: ASM Press), pp. 749–763.Suche in Google Scholar

Inomata, N. and Yamazaki, T. (2000). Evolution of nucleotide substitutions and gene regulation in the amylase multigenes in Drosophila kikkawai and its sibling species. Mol. Biol. Evol.17, 601–615.10.1093/oxfordjournals.molbev.a026339Suche in Google Scholar PubMed

International Human Genome Sequencing Center (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.10.1038/35057062Suche in Google Scholar PubMed

Kadonaga, J.T. (2002). The DPE, a core promoter element for transcription by RNA polymerase II. Exp. Mol. Med.34, 259–264.10.1038/emm.2002.36Suche in Google Scholar PubMed

Kochman, M. and Wieczorek, E. (1991). Molecular mechanism of the juvenile hormone action. Acta Biochim. Pol.38, 393–405.Suche in Google Scholar

Kochman, M. and Wieczorek, E. (1994). Proteins involved in juvenile hormone signal transmission. In: Insects: chemical, physiological and environmental aspects, J. Kucharczyk, ed. (Wrocław, Poland: University of Wrocław), pp. 92–119.Suche in Google Scholar

Kołodziejczyk, R., Dobryszycki, P., Ożyhar, A., and Kochman, M. (2001). Two disulphide bridges are present in juvenile hormone binding protein from Galleria mellonella. Acta Biochim. Pol.48, 917–920.10.18388/abp.2001_3857Suche in Google Scholar

Kołodziejczyk, R., Kochman, M., Bujacz, P., Dobryszycki, P., Ożyhar, A., and Jaskólski, M. (2003). Crystallization and preliminary crystallographic studies of juvenile hormone-binding protein from Galleria mellonella hemolymph. Acta Cryst. D59, 519–521.Suche in Google Scholar

Kutach, A.K. and Kadonaga, J.T. (2000). The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell. Biol.20, 4754–4764.10.1128/MCB.20.13.4754-4764.2000Suche in Google Scholar

Kwiatowski, J., Krawczyk, M., Kornacki, M., Bailey, K., and Ayala, F.J. (1995). Evidence against the exon theory of genes derived from the triose-phosphate isomerase gene. Proc. Natl. Acad. Sci. USA92, 8503–8506.10.1073/pnas.92.18.8503Suche in Google Scholar

Lerro, K.A. and Prestwich, G.D. (1990). Cloning and sequencing of a cDNA for the hemolymph juvenile hormone binding protein of larval Manduca sexta. J. Biol. Chem.265, 19800–19806.10.1016/S0021-9258(17)45443-3Suche in Google Scholar

Livak, K.J. (1990). Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics124, 303–316.10.1093/genetics/124.2.303Suche in Google Scholar

Long, M. and Deutsch, M. (1999). Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol.16, 1528–1534.10.1093/oxfordjournals.molbev.a026065Suche in Google Scholar

Long, M. and Rosenberg, C. (2000). Testing the “proto-splice sites” model of intron origin: evidence from analysis of intron phase correlations. Mol. Biol. Evol.17, 1789–1796.10.1093/oxfordjournals.molbev.a026279Suche in Google Scholar

Long, M., Rosenberg, C., and Gilbert, W. (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA92, 12495–12499.10.1073/pnas.92.26.12495Suche in Google Scholar

Mans, B.J. and Neitz, A.W. (2004). Exon-intron structure of outlier tick lipocalins indicate a monophyletic origin within the larger lipocalin family. Insect Biochem. Mol. Biol.34, 585–594.10.1016/j.ibmb.2004.03.006Suche in Google Scholar

Memmel, N.A., Trewitt, P.M., Grzelak, K., Rajaratnam, V.S., and Kumaran, A.K. (1994). Nucleotide sequence, structure and developmental regulation of LHP82, a juvenile hormone-suppressible hexamerin gene from the wax moth, Galleria mellonella. Insect Biochem. Mol. Biol.24, 133–144.10.1016/0965-1748(94)90079-5Suche in Google Scholar

Orth, A.P., Doll, S.C., and Goodman, W.G. (2003). Sequence, structure and expression of the hemolymph juvenile hormone binding protein gene in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol.33, 93–102.10.1016/S0965-1748(02)00180-7Suche in Google Scholar

Ożyhar, A. and Kochman, M. (1987). Juvenile-hormone-binding protein from the hemolymph of Galleria mellonella (L). Isolation and characterization. Eur. J. Biochem.162, 675–682.10.1111/j.1432-1033.1987.tb10690.xSuche in Google Scholar

Purnell, B.A., Emanuel, P.A., and Gilmour, D.S. (1994). TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes. Genes Dev.8, 830–842.10.1101/gad.8.7.830Suche in Google Scholar

Renault, N., King-Jones, K., and Lehmann, M. (2001). Downregulation of the tissue-specific transcription factor Fork head by Broad-Complex mediates a stage-specific hormone response. Development128, 3729–3737.10.1242/dev.128.19.3729Suche in Google Scholar

Rodriguez Parkitna, J.M., Ożyhar, A., Wiśniewski, J.R., and Kochman, M. (2002). Cloning and sequence analysis of Galleria mellonella juvenile hormone binding protein – a search for ancestors and relatives. Biol. Chem.383, 1343–1355.10.1515/BC.2002.153Suche in Google Scholar

Rzhetsky, A., Ayala, F.J., Hsu, L.C., Chang, C., and Yoshida, A. (1997). Exon/intron structure of aldehyde dehydrogenase genes supports the ‘introns-late’ theory. Proc. Natl. Acad. Sci. USA94, 6820–6825.10.1073/pnas.94.13.6820Suche in Google Scholar

Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. (1985). Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science230, 1350–1354.10.1126/science.2999980Suche in Google Scholar

Salier, J.P. (2000). Chromosomal location, exon/intron organization and evolution of lipocalin genes. Biochim. Biophys. Acta1482, 25–34.10.1016/S0167-4838(00)00144-8Suche in Google Scholar

Sambrook, J. and Russell, D.W. (2001). Molecular Cloning – A Laboratory Manual (Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press).Suche in Google Scholar

Sanchez, D., Ganfornina, M.D., Gutierrez, G., and Marin, A. (2003). Exon-intron structure and evolution of the lipocalin gene family. Mol. Biol. Evol.20, 775–783.10.1093/molbev/msg079Suche in Google Scholar PubMed

Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA74, 5463–5467.10.1073/pnas.74.12.5463Suche in Google Scholar PubMed PubMed Central

Schuhmann, B., Seitz, V., Vilcinskas, A., and Podsiadlowski, L. (2003). Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol.53, 125–133.10.1002/arch.10091Suche in Google Scholar PubMed

Sehnal, F. (1966). Kritisches Studium der Bionomie und Biometric der in verschienden Lebensbedingungen gezuchteten Wachmotte Galleria mellonella L. (Lepidoptera). Z. Wiss. Zool.174, 53–82.Suche in Google Scholar

Sharp, P.A. (1981). Speculations on RNA splicing. Cell23, 643–646.10.1016/0092-8674(81)90425-6Suche in Google Scholar

Sharp, P.A. and Burge, C.B. (1997). Classification of introns: U2-type or U12-type. Cell91, 875–879.10.1016/S0092-8674(00)80479-1Suche in Google Scholar

Smale, S.T. (2001). Core promoters: active contributors to combinatorial gene regulation. Genes Dev.15, 2503–2508.10.1101/gad.937701Suche in Google Scholar

Touhara, K. and Prestwich, G.D. (1993). Juvenile hormone epoxide hydrolase: photoaffinity labeling, purification and characterisation from tobacco hornworm eggs. J. Biol. Chem.268, 19604–19609.10.1016/S0021-9258(19)36559-7Suche in Google Scholar

Touhara, K., Lerro, K.A., Bonning, B.C., Hammock, B.D., and Prestwich, G.D. (1993). Ligand binding by a recombinant insect juvenile hormone binding protein. Biochemistry32, 2068–2075.10.1021/bi00059a026Suche in Google Scholar

Trowell, S.C. (1992). High affinity juvenile hormone carrier proteins in the haemolymph of insects. Comp. Biochem. Physiol. B103, 795–807.10.1016/0305-0491(92)90196-XSuche in Google Scholar

Vermunt, A.M., Kamimura, M., Hirai, M., Kiuchi, M., and Shiotsuki, T. (2001). The juvenile hormone binding protein of silkworm haemolymph: gene and functional analysis. Insect Mol. Biol.10, 147–154.10.1046/j.1365-2583.2001.00249.xSuche in Google Scholar

Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnhäuser, R., et al. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Res.29, 281–283.10.1093/nar/29.1.281Suche in Google Scholar

Wojtasek, H. and Prestwich, G.D. (1995). Key disulfide bonds in an insect hormone binding protein: cDNA cloning of a juvenile hormone binding protein of Heliothis virescens and ligand binding by native and mutant forms. Biochemistry34, 5234–5241.10.1021/bi00015a037Suche in Google Scholar

Yang, C., Teng, X., Zurovec, M., Scheller, K., and Sehnal, F. (1998). Characterization of the P25 silk gene and associated insertion elements in Galleria mellonella. Gene209, 157–165.10.1016/S0378-1119(98)00029-8Suche in Google Scholar

Young, J.K., Orth, A.P., and Goodman, W.G. (2003). Allelic variation in the hemolymph juvenile hormone binding protein gene of Manduca sexta. Mol. Cell. Endocrinol.208, 41–50.10.1016/S0303-7207(03)00259-4Suche in Google Scholar

Zhou, X. and Riddiford, L.M. (2002). Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development129, 2259–2269.Suche in Google Scholar

Published Online: 2005-06-01
Published in Print: 2005-01-01

©2004 by Walter de Gruyter Berlin New York

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.001/html?lang=de
Button zum nach oben scrollen