Tapasin and other chaperones: models of the MHC class I loading complex
-
Cynthia Anne Wright
Abstract
MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.
References
Androlewicz, M., Anderson, K., and Cresswell, P. (1993). Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc. Natl. Acad. Sci. USA90, 9130–9134.10.1073/pnas.90.19.9130Suche in Google Scholar
Baas, E. J., van Santen, H. M., Kleijmeer, M. J., Geuze, H. J., Peters, P. J., and Ploegh, H. L. (1992). Peptide-induced stabilization and intracellular localization of empty HLA class I complexes. J. Exp. Med.176, 147–156.10.1084/jem.176.1.147Suche in Google Scholar
Balow, J. P., Weissman, J. D., and Kearse, K. P. (1995). Unique expression of major histocompatibility complex class I proteins in the absence of glucose trimming and calnexin association. J. Biol. Chem.270, 29025–29029.10.1074/jbc.270.48.29025Suche in Google Scholar
Bangia, N., Lehner, P. J., Hughes, E. A., Surman, M., and Cresswell, P. (1999). The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur. J. Immunol.29, 1858–1870.10.1002/(SICI)1521-4141(199906)29:06<1858::AID-IMMU1858>3.0.CO;2-CSuche in Google Scholar
Barnden, M. J., Purcell, A. W., Gorman, J. J., and McCluskey, J. (2000). Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol.165, 322–330.10.4049/jimmunol.165.1.322Suche in Google Scholar
Beissbarth, T., Sun, J., Kavathas, P. B., and Ortmann, B. (2000). Increased efficiency of folding and peptide loading of mutant MHC class I molecules. Eur. J. Immunol.30, 1203–1213.10.1002/(SICI)1521-4141(200004)30:4<1203::AID-IMMU1203>3.0.CO;2-LSuche in Google Scholar
Bouvier, M., Guo, H. C., Smith, K. J., and Wiley, D. C. (1998). Crystal structures of HLA-A*0201 complexed with antigenic peptides with either the amino- or carboxyl-terminal group substituted by a methyl group. Proteins33, 97–106.10.1002/(SICI)1097-0134(19981001)33:1<97::AID-PROT9>3.0.CO;2-ISuche in Google Scholar
Bouvier, M., and Wiley, D. C. (1994). Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules. Science265, 398–402.10.1126/science.8023162Suche in Google Scholar
Bresnahan, P. A., Barber, L. D., and Brodsky, F. M. (1997). Localization of class I histocompatibility molecule assembly by subfractionation of the early secretory pathway. Hum. Immunol.53, 129–139.10.1016/S0198-8859(97)00001-3Suche in Google Scholar
Brocke, P., Garbi, N., Momburg, F., and Hammerling, G. J. (2002). HLA-DM, HLA-DO and tapasin: functional similarities and differences. Curr. Opin. Immunol.14, 22–29.10.1016/S0952-7915(01)00294-1Suche in Google Scholar
Busch, D. H., and Pamer, E. G. (1998). MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol.160, 4441–4448.10.4049/jimmunol.160.9.4441Suche in Google Scholar
Cerundolo, V., Elliott, T., Elvin, J., Bastin, J., Rammensee, H.-G., and Townsend, A. (1991). The binding affinity and dissociation rates of peptides for class I histocompatibility complex molecules. Eur. J. Immunol.21, 2069–2075.10.1002/eji.1830210915Suche in Google Scholar
Chen, M., Stafford, W. F., Diedrich, G., Khan, A., and Bouvier, M. (2002). A characterization of the lumenal region of human tapasin reveals the presence of two structural domains. Biochemistry41, 14539–14545.10.1021/bi020521uSuche in Google Scholar
Chen, Y., Sidney, J., Southwood, S., Cox, A. L., Sakaguchi, K., Henderson, R. A., Apella, E., Hunt, D. F., Sette, A., and Engelhard, V. H. (1994). Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and with different conformations. J. Immunol.152, 2874–2881.Suche in Google Scholar
Chen, Z. W., Craiu, A., Shen, L., Kuroda, M. J., Iroku, U. C., Watkins, D. I., Voss, G., and Letvin, N. L. (2000). Simian immunodeficiency virus evades a dominant epitope-specific cytotoxic T lymphocyte response through a mutation resulting in the accelerated dissociation of viral peptide and MHC class I. J. Immunol.164, 6474–6479.10.4049/jimmunol.164.12.6474Suche in Google Scholar
Collins, E. J., Garboczi, D. N., and Wiley, D. C. (1994). Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature371, 626–629.10.1038/371626a0Suche in Google Scholar
Cresswell, P. (2000). Intracellular surveillance: controlling the assembly of MHC class I-peptide complexes. Traffic1, 301–305.10.1034/j.1600-0854.2000.010402.xSuche in Google Scholar
Croze, E. M., and Morre, D. J. (1981). Flow kinetics of mouse histocompatibility antigens. Proc. Natl. Acad. Sci. USA78, 1547–1551.10.1073/pnas.78.3.1547Suche in Google Scholar
Dam, J., Guan, R., Natarajan, K., Dimasi, N., Chlewicki, L. K., Kranz, D. M., Schuck, P., Margulies, D. H., Mariuzza, R. A., Wang, J., and Tormo, J. (2003). Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2K(b). Nat. Immunol.4, 1213–1222.10.1038/ni1006Suche in Google Scholar
Danilczyk, U. G., Cohen-Doyle, M. F., and Williams, D. B. (2000). Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. J. Biol. Chem.275, 13089–13097.10.1074/jbc.275.17.13089Suche in Google Scholar
Danilczyk, U. G., and Williams, D. B. (2001). The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo. J. Biol. Chem.276, 25532–25540.10.1074/jbc.M100270200Suche in Google Scholar
Dick, T. P., and Cresswell, P. (2002). Thiol oxidation and reduction in major histocompatibility complex class I-restricted antigen processing and presentation. Methods Enzymol.348, 49–54.10.1016/S0076-6879(02)48625-9Suche in Google Scholar
Dick, T. P., Bangia, N., Peaper, D. R., and Cresswell, P. (2002). Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity16, 87–98.10.1016/S1074-7613(02)00263-7Suche in Google Scholar
Diedrich, G., Bangia, N., Pan, M., and Cresswell, P. (2001). A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J. Immunol.166, 1703–1709.10.4049/jimmunol.166.3.1703Suche in Google Scholar
Ellgaard, L., and Helenius, A. (2001). ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol.13, 431–437.10.1016/S0955-0674(00)00233-7Suche in Google Scholar
Ellgaard, L., and Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol.4, 181–191.10.1038/nrm1052Suche in Google Scholar
Elliott, T. (1997). How does TAP associate with MHC class I molecules? Immunol. Today18, 375–379.Suche in Google Scholar
Elliott, T., Cerundolo, V., Elvin, J., and Townsend, A. (1991). Peptide-induced conformational change of the class I heavy chain. Nature351, 402–406.10.1038/351402a0Suche in Google Scholar
Fahnestock, M. L., Johnson, J. L., Feldman, R. M., Tsomides, T. J., Mayer, J., Narhi, L. O., and Bjorkman, P. J. (1994). Effects of peptide length and composition on binding to an empty class I MHC heterodimer. Biochemistry33, 8149–8158.10.1021/bi00192a020Suche in Google Scholar
Farmery, M. R., Allen, S., Allen, A. J., and Bulleid, N. J. (2000). The role of ERp57 in disulfide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J. Biol. Chem.275, 14933–14938.10.1074/jbc.275.20.14933Suche in Google Scholar
Frickel, E. M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K., and Ellgaard, L. (2002). TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. USA99, 1954–1959.10.1073/pnas.042699099Suche in Google Scholar
Gao, B., Adhikari, R., Howarth, M., Nakamura, K., Gold, M. C., Hill, A. B., Knee, R., Michalak, M., and Elliott, T. (2002). Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity16, 99–109.10.1016/S1074-7613(01)00260-6Suche in Google Scholar
Gao, B., Williams, A., Sewell, A., and Elliott, T. (2004). Generation of a functional, soluble tapasin protein from an alternatively spliced mRNA. Genes Immun.5, 101–108.10.1038/sj.gene.6364043Suche in Google Scholar PubMed
Gao, G. F., Tormo, J., Gerth, U. C., Wyer, J. R., McMichael, A. J., Stuart, D. I., Bell, J. I., Jones, E. Y., and Jakobsen, B. K. (1997). Crystal structure of the complex between human CD8(a) and HLA-A2. Nature387, 630–634.10.1038/42523Suche in Google Scholar PubMed
Garbi, N., Tiwari, N., Momburg, F., and Hammerling, G. J. (2003). A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. Eur. J. Immunol.33, 264–273.10.1002/immu.200390029Suche in Google Scholar PubMed
Grandea 3rd, A. G., and Van Kaer, L. (2001). Tapasin: an ER chaperone that controls MHC class I assembly with peptide. Trends Immunol.22, 194–199.Suche in Google Scholar
Grandea 3rd, A. G., Androlewicz, M. J., Athwal, R. S., Geraghty, D. E., and Spies, T. (1995). Dependence of peptide binding by MHC class I molecules on their interaction with TAP. Science270, 105–108.Suche in Google Scholar
Grandea 3rd, A. G., Lehner, P. J., Cresswell, P., and Spies, T. (1997). Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics46, 477–483.Suche in Google Scholar
Grandea 3rd, A. G., Golovina, T. N., Hamilton, S. E., Sriram, V., Spies, T., Brutkiewicz, R. R., Harty, J. T., Eisenlohr, L. C., and Van Kaer, L. (2000). Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity13, 213–222.Suche in Google Scholar
Hammond, C., Braakman, I., and Helenius, A. (1994). Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA91, 913–917.10.1073/pnas.91.3.913Suche in Google Scholar PubMed PubMed Central
Hammond, C., and Helenius, A. (1994a). Folding of VSV G protein: sequential interaction with BiP and calnexin. Science266, 456–458.10.1126/science.7939687Suche in Google Scholar PubMed
Hammond, C., and Helenius, A. (1994b). Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol.126, 41–52.10.1083/jcb.126.1.41Suche in Google Scholar PubMed PubMed Central
Harris, M. R., Lybarger, L., Myers, N. B., Hilbert, C., Solheim, J. C., Hansen, T. H., and Yu, Y. Y. (2001a). Interactions of HLA-B27 with the peptide loading complex as revealed by heavy chain mutations. Int. Immunol.13, 1275–1282.10.1093/intimm/13.10.1275Suche in Google Scholar PubMed
Harris, M. R., Lybarger, L., Yu, Y. Y., Myers, N. B., and Hansen, T. H. (2001b). Association of ERp57 with mouse MHC class I molecules is tapasin dependent and mimics that of calreticulin and not calnexin. J. Immunol.166, 6686–6692.10.4049/jimmunol.166.11.6686Suche in Google Scholar PubMed
Hayes, B. K., Esquivel, F., Bennink, J. R., Yewdell, J. W., and Varki, A. (1995). Structure of the N-linked oligosaccharides of MHC class I molecules from cells deficient in the antigenic peptide transporter. Implications for the site of peptide association. J. Immunol.155, 3780–3787.Suche in Google Scholar
Hebert, A. M., Strohmaier, J., Whitman, M. C., Chen, T., Gubina, E., Hill, D. M., Lewis, M. S., and Kozlowski, S. (2001). Kinetics and thermodynamics of beta 2-microglobulin binding to the α3 domain of major histocompatibility complex class I heavy chain. Biochemistry40, 5233–5242.10.1021/bi002392sSuche in Google Scholar PubMed
Hill, A., Takiguchi, M., and Mc Michael, A. (1993). Different rates of HLA class I molecule assembly which are determined by amino acid sequence in the α2 domain. Immunogenetics37, 95–101.Suche in Google Scholar
Hillig, R. C., Coulie, P. G., Stroobant, V., Saenger, W., Ziegler, A., and Hulsmeyer, M. (2001). High-resolution structure of HLA-A*0201 in complex with a tumour-specific antigenic peptide encoded by the MAGE-A4 gene. J. Mol. Biol.310, 1167–1176.10.1006/jmbi.2001.4816Suche in Google Scholar PubMed
Horig, H., Young, A. C., Papadopoulos, N. J., DiLorenzo, T. P., and Nathenson, S. G. (1999). Binding of longer peptides to the H-2Kb heterodimer is restricted to peptides extended at their C terminus: refinement of the inherent MHC class I peptide binding criteria. J. Immunol.163, 4434–4441.10.4049/jimmunol.163.8.4434Suche in Google Scholar
Hsu, V. W., Yuan, L. C., Nuchtern, J. G., Lippincott, S. J., Hämmerling, G. J., and Klausner, R. D. (1991). A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature352, 441–444.10.1038/352441a0Suche in Google Scholar PubMed
Hughes, E. A., and Cresswell, P. (1998). The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr. Biol.8, 709–712.10.1016/S0960-9822(98)70278-7Suche in Google Scholar
Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A., and Williams, D. B. (1994). Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science263, 384–387.10.1126/science.8278813Suche in Google Scholar PubMed
Jones, E. Y., Tormo, J., Reid, S. W., and Stuart, D. I. (1998). Recognition surfaces of MHC class I. Immunol. Rev.163, 121–128.10.1111/j.1600-065X.1998.tb01191.xSuche in Google Scholar PubMed
Khan, A. R., Baker, B. M., Ghosh, P., Biddison, W. E., and Wiley, D. C. (2000). The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol.164, 6398–6405.10.4049/jimmunol.164.12.6398Suche in Google Scholar PubMed
Kleijmeer, M., Kelly, A., Geuze, H., Slot, J., Townsend, A., and Trowsdale, J. (1992). Location of MHC-encoded transporters in the endoplasmic reticulum and cis-Golgi. Nature357, 342–344.10.1038/357342a0Suche in Google Scholar PubMed
Kulig, K., Nandi, D., Bacik, I., Monaco, J. J., and Vukmanovic, S. (1998). Physical and functional association of the major histocompatibility complex class I heavy chain α3 domain with the transporter associated with antigen processing. J. Exp. Med.187, 865–874.10.1084/jem.187.6.865Suche in Google Scholar PubMed PubMed Central
Latron, F., Pazmany, L., Morrison, J., Moots, R., Saper, M. A., McMichael, A., and Strominger, J. L. (1992). A critical role for conserved residues in the cleft of HLA-A2 in presentation of a nonapeptide to T cells. Science257, 964–967.10.1126/science.1380181Suche in Google Scholar PubMed
Leach, M. R., Cohen-Doyle, M. F., Thomas, D. Y., and Williams, D. B. (2002). Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J. Biol. Chem.277, 29686–29697.10.1074/jbc.M202405200Suche in Google Scholar PubMed
Leach, M. R., and Williams, D. B. (2004). Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation. J. Biol. Chem.279, 9072–9079.10.1074/jbc.M310788200Suche in Google Scholar PubMed
Lee, N., and Geraghty, D. E. (2003). HLA-F surface expression on B cell and monocyte cell lines is partially independent from tapasin and completely independent from TAP. J. Immunol.171, 5264–5271.10.4049/jimmunol.171.10.5264Suche in Google Scholar PubMed
Lehner, P. J., Surman, M. J., and Cresswell, P. (1998). Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line.220. Immunity8, 221–231.10.1016/S1074-7613(00)80474-4Suche in Google Scholar
Lewis, J. W., and Elliott, T. (1998). Evidence for successive peptide binding and quality control stages during MHC class I assembly. Curr. Biol.8, 717–720.10.1016/S0960-9822(98)70280-5Suche in Google Scholar
Lewis, J. W., Neisig, A., Neefjes, J., and Elliott, T. (1996). Point mutations in the α2 domain of HLA-A2.1 define a functionally relevant interaction with TAP. Curr. Biol.6, 873–883.Suche in Google Scholar
Lewis, J. W., Sewell, A., Price, D., and Elliott, T. (1998). HLA-A*0201 presents TAP-dependent peptide epitopes to cytotoxic T lymphocytes in the absence of tapasin. Eur. J. Immunol.28, 3214–3220.10.1002/(SICI)1521-4141(199810)28:10<3214::AID-IMMU3214>3.0.CO;2-CSuche in Google Scholar
Lindahl, K. F., Byers, D. E., Dabhi, V. M., Hovik, R., Jones, E. P., Smith, G. P., Wang, C. R., Xiao, H., and Yoshino, M. (1997). H2-M3, a full-service class Ib histocompatibility antigen. Annu. Rev. Immunol.15, 851–879.10.1146/annurev.immunol.15.1.851Suche in Google Scholar
Lindquist, J. A., Hammerling, G. J., and Trowsdale, J. (2001). ER60/ERp57 forms disulfide-bonded intermediates with MHC class I heavy chain. FASEB J.15, 1448–1450.10.1096/fj.00-0720fjeSuche in Google Scholar
Machold, R. P., Andree, S., Van Kaer, L., Ljunggren, H. G., and Ploegh, H. L. (1995). Peptide influences the folding and intracellular transport of free major histocompatibility complex class I heavy chains. J. Exp. Med.181, 1111–1122.10.1084/jem.181.3.1111Suche in Google Scholar
Madden, D. R. (1995). The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol.13, 587–622.10.1146/annurev.iy.13.040195.003103Suche in Google Scholar
Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. (1992). The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell70, 1035–1048.Suche in Google Scholar
Mancino, L., Rizvi, S. M., Lapinski, P. E., and Raghavan, M. (2002). Calreticulin recognizes misfolded HLA-A2 heavy chains. Proc. Natl. Acad. Sci. USA99, 5931–5936.10.1073/pnas.092031799Suche in Google Scholar
Marguet, D., Spiliotis, E. T., Pentcheva, T., Lebowitz, M., Schneck, J., and Edidin, M. (1999). Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of these molecules in the endoplasmic reticulum. Immunity11, 231–240.10.1016/S1074-7613(00)80098-9Suche in Google Scholar
Matlack, K. E., Mothes, W., and Rapoport, T. A. (1998). Protein translocation: tunnel vision. Cell92, 381–390.10.1016/S0092-8674(00)80930-7Suche in Google Scholar
Matsumura, M., Fremont, D. H., Peterson, P. A., and Wilson, I. A. (1992). Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science257, 927–934.10.1126/science.1323878Suche in Google Scholar
Mayer, W. E., and Klein, J. (2001). Is tapasin a modified MHC class I molecule? Immunogenetics53, 719–723.10.1007/s00251-001-0403-ySuche in Google Scholar
Meyer, T. H., van Endert, P. M., Uebel, S., Ehring, B., and Tampé , R. (1994). Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Lett.351, 443–447.10.1016/0014-5793(94)00908-2Suche in Google Scholar
Molinari, M., and Helenius, A. (1999). Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature402, 90–93.10.1038/47062Suche in Google Scholar
Molinari, M., and Helenius, A. (2000). Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science288, 331–333.10.1126/science.288.5464.331Suche in Google Scholar
Molinari, M., Eriksson, K. K., Calanca, V., Galli, C., Cresswell, P., Michalak, M., and Helenius, A. (2004). Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell13, 125–135.10.1016/S1097-2765(03)00494-5Suche in Google Scholar
Momburg, F., and Tan, P. (2002). Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol. Immunol.39, 217–233.10.1016/S0161-5890(02)00103-7Suche in Google Scholar
Mossessova, E., Bickford, L. C., and Goldberg, J. (2003). SNARE selectivity of the COPII coat. Cell114, 483–495.10.1016/S0092-8674(03)00608-1Suche in Google Scholar
Myers, N. B., Harris, M. R., Connolly, J. M., Lybarger, L., Yu, Y. Y., and Hansen, T. H. (2000). Kb, Kd, and Ld molecules share common tapasin dependencies as determined using a novel epitope tag. J. Immunol.165, 5656–5663.10.4049/jimmunol.165.10.5656Suche in Google Scholar
Natarajan, K., Dimasi, N., Wang, J., Margulies, D. H., Mariuzza, R. A., and Tormo, J. (2002). MHC class I recognition by Ly49 natural killer cell receptors-Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Mol. Immunol.38, 1023–1027.10.1016/S0161-5890(02)00031-7Suche in Google Scholar
Neefjes, J., Momburg, F., and Hämmerling, G. (1993). Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science261, 769–771.10.1126/science.8342042Suche in Google Scholar
Neisig, A., Wubbolts, R., Zang, X., Melief, C., and Neefjes, J. (1996). Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J. Immunol.156, 3196–3206.10.4049/jimmunol.156.9.3196Suche in Google Scholar
Nossner, E., and Parham, P. (1995). Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules. J. Exp. Med.181, 327–337.10.1084/jem.181.1.327Suche in Google Scholar
Oliver, J. D., Roderick, H. L., Llewellyn, D. H., and High, S. (1999). ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell10, 2573–2582.10.1091/mbc.10.8.2573Suche in Google Scholar
Ortmann, B., Androlewicz, M. J., and Cresswell, P. (1994). MHC class I/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature368, 864–867.10.1038/368864a0Suche in Google Scholar
Ortmann, B., Copeman, J., Lehner, P. J., Sadasivan, B., Herberg, J. A., Grandea, A. G., Riddell, S. R., Tampe, R., Spies, T., Trowsdale, J., and Cresswell, P. (1997). A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science277, 1306–1309.10.1126/science.277.5330.1306Suche in Google Scholar
Paquet, M. E., and Williams, D. B. (2002). Mutant MHC class I molecules define interactions between components of the peptide-loading complex. Int. Immunol.14, 347–358.10.1093/intimm/14.4.347Suche in Google Scholar
Park, B., and Ahn, K. (2003). An essential function of Tapasin in quality control of HLA-G molecules. J. Biol. Chem.278, 14337–14345.10.1074/jbc.M212882200Suche in Google Scholar
Park, B., Kim, Y., Shin, J., Lee, S., Cho, K., Fruh, K., and Ahn, K. (2004). Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity20, 71–85.10.1016/S1074-7613(03)00355-8Suche in Google Scholar
Park, B., Lee, S., Kim, E., and Ahn, K. (2003). A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence. J. Immunol.170, 961–968.10.4049/jimmunol.170.2.961Suche in Google Scholar PubMed
Parodi, A. J. (2000). Protein glucosylation and its role in protein folding. Annu. Rev. Biochem.69, 69–93.10.1146/annurev.biochem.69.1.69Suche in Google Scholar PubMed
Patil, A. R., Thomas, C. J., and Surolia, A. (2000). Kinetics and the mechanism of interaction of the endoplasmic reticulum chaperone, calreticulin, with monoglucosylated (Glc1Man9GlcNAc2) substrate. J. Biol. Chem.275, 24348–24356.10.1074/jbc.M003102200Suche in Google Scholar
Paulsson, K. M., Anderson, P. O., Chen, S., Sjogren, H. O., Ljunggren, H. G., Wang, P., and Li, S. (2001a). Assembly of tapasin-associated MHC class I in the absence of the transporter associated with antigen processing (TAP). Int. Immunol.13, 23–29.10.1093/intimm/13.1.23Suche in Google Scholar
Paulsson, K. M., Wang, P., Anderson, P. O., Chen, S., Pettersson, R. F., and Li, S. (2001b). Distinct differences in association of MHC class I with endoplasmic reticulum proteins in wild-type, and β2-microglobulin- and TAP-deficient cell lines. Int. Immunol.13, 1063–1073.10.1093/intimm/13.8.1063Suche in Google Scholar
Paulsson, K. M., Kleijmeer, M. J., Griffith, J., Jevon, M., Chen, S., Anderson, P. O., Sjogren, H. O., Li, S., and Wang, P. (2002). Association of tapasin and COPI provides a mechanism for the retrograde transport of major histocompatibility complex (MHC) class I molecules from the Golgi complex to the endoplasmic reticulum. J. Biol. Chem.277, 18266–18271.10.1074/jbc.M201388200Suche in Google Scholar
Peace-Brewer, A. L., Tussey, L. G., Matsui, M., Li, G., Quinn, D. G., and Frelinger, J. A. (1996). A point mutation in HLAA*0201 results in failure to bind the TAP complex and to present virus-derived peptides to CTL. Immunity4, 505–514.10.1016/S1074-7613(00)80416-1Suche in Google Scholar
Peh, C. A., Burrows, S. R., Barnden, M., Khanna, R., Cresswell, P., Moss, D. J., and McCluskey, J. (1998). HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity8, 531–542.10.1016/S1074-7613(00)80558-0Suche in Google Scholar
Petrone, P. M., and Garcia, A. E. (2004). MHC-peptide binding is assisted by bound water molecules. J. Mol. Biol.338, 419–435.10.1016/j.jmb.2004.02.039Suche in Google Scholar PubMed
Prilliman, K. R., Jackson, K. W., Lindsey, M., Wang, J., Crawford, D., and Hildebrand, W. H. (1999). HLA-B15 peptide ligands are preferentially anchored at their C termini. J. Immunol.162, 7277–7284.10.4049/jimmunol.162.12.7277Suche in Google Scholar
Purcell, A. W., Gorman, J. J., Garcia-Peydro, M., Paradela, A., Burrows, S. R., Talbo, G. H., Laham, N., Peh, C. A., Reynolds, E. C., Lopez De Castro, J. A., and McCluskey, J. (2001). Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J. Immunol.166, 1016–1027.10.4049/jimmunol.166.2.1016Suche in Google Scholar PubMed
Radcliffe, C. M., Diedrich, G., Harvey, D. J., Dwek, R. A., Cresswell, P., and Rudd, P. M. (2002). Identification of specific glycoforms of major histocompatibility complex class I heavy chains suggests that class I peptide loading is an adaptation of the quality control pathway involving calreticulin and ERp57. J. Biol. Chem.277, 46415–46423.10.1074/jbc.M202466200Suche in Google Scholar PubMed
Raghuraman, G., Lapinski, P. E., and Raghavan, M. (2002). Tapasin interacts with the membrane-spanning domains of both TAP subunits and enhances the structural stability of TAP1 × TAP2 Complexes. J. Biol. Chem.277, 41786–41794.10.1074/jbc.M207128200Suche in Google Scholar PubMed
Raposo, G., van Santen, H. M., Leijendekker, R., Geuze, H. J., and Ploegh, H. L. (1995). Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER-Golgi intermediate compartment. J. Cell Biol.131, 1403–1419.10.1083/jcb.131.6.1403Suche in Google Scholar
Reits, E. A., Vos, J. C., Gromme, M., and Neefjes, J. (2000). The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature404, 774–778.10.1038/35008103Suche in Google Scholar
Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell78, 761–771.10.1016/S0092-8674(94)90462-6Suche in Google Scholar
Rock, K. L., York, I. A., and Goldberg, A. L. (2004). Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol.5, 670–677.10.1038/ni1089Suche in Google Scholar
Russ, G., Esquivel, F., Yewdell, J. W., Cresswell, P., Spies, T., and Bennink, J. R. (1995). Assembly, intracellular localization, and nucleotide binding properties of the human peptide transporters TAP1 and TAP2 expressed by recombinant vaccinia viruses. J. Biol. Chem.270, 21312–21318.10.1074/jbc.270.36.21312Suche in Google Scholar
Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T., and Cresswell, P. (1996). Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity5, 103–114.10.1016/S1074-7613(00)80487-2Suche in Google Scholar
Sadasivan, B. K., Cariappa, A., Waneck, G. L., and Cresswell, P. (1995). Assembly, peptide loading, and transport of MHC class I molecules in a calnexin-negative cell line. Cold Spring Harb. Symp. Quant. Biol.60, 267–275.10.1101/SQB.1995.060.01.031Suche in Google Scholar PubMed
Saric, T., Chang, S. C., Hattori, A., York, I. A., Markant, S., Rock, K. L., Tsujimoto, M., and Goldberg, A. L. (2002). An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol.3, 1169–1176.10.1038/ni859Suche in Google Scholar PubMed
Schoenhals, G. J., Krishna, R. M., Grandea, A. G., 3rd, Spies, T., Peterson, P. A., Yang, Y., and Fruh, K. (1999). Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells. EMBO J.18, 743–753.10.1093/emboj/18.3.743Suche in Google Scholar PubMed PubMed Central
Serwold, T., Gonzalez, F., Kim, J., Jacob, R., and Shastri, N. (2002). ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature419, 480–483.10.1038/nature01074Suche in Google Scholar PubMed
Sette, A., Vitiello, A., Reherman, B., Fowler, P., Nayersina, R., Kast, W. M., Melief, C. J., Oseroff, C., Yuan, L., Ruppert, J., and et al. (1994). The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol.153, 5586–5592.10.4049/jimmunol.153.12.5586Suche in Google Scholar
Sijts, A. J., and Pamer, E. G. (1997). Enhanced intracellular dissociation of major histocompatibility complex class I-associated peptides: a mechanism for optimizing the spectrum of cell surface-presented cytotoxic T lymphocyte epitopes. J. Exp. Med.185, 1403–1411.10.1084/jem.185.8.1403Suche in Google Scholar
Smith, J. D., Solheim, J. C., Carreno, B. M., and Hansen, T. H. (1995). Characterization of class I MHC folding intermediates and their disparate interactions with peptide and β2-microglobulin. Mol. Immunol.32, 531–540.10.1016/0161-5890(95)00013-5Suche in Google Scholar
Snyder, H. L., Yewdell, J. W., and Bennink, J. R. (1994). Trimming of antigenic peptides in an early secretory compartment. J. Exp. Med.180, 2389–2394.10.1084/jem.180.6.2389Suche in Google Scholar
Spies, T., Cerundolo, V., Colonna, M., Cresswell, P., Townsend, A., and DeMars, R. (1992). Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature355, 644–646.10.1038/355644a0Suche in Google Scholar
Spiliotis, E. T., Manley, H., Osorio, M., Zuniga, M. C., and Edidin, M. (2000). Selective export of MHC class I molecules from the ER after their dissociation from TAP. Immunity13, 841–851.10.1016/S1074-7613(00)00081-9Suche in Google Scholar
Springer, S., Döring, K., Skipper, J. C., Townsend, A. R., and Cerundolo, V. (1998). Fast association rates suggest a conformational change in the MHC class I molecule H-2Db upon peptide binding. Biochemistry37, 3001–3012.10.1021/bi9717441Suche in Google Scholar
Springer, S., Spang, A., and Schekman, R. (1999). A primer on vesicle budding. Cell97, 145–148.10.1016/S0092-8674(00)80722-9Suche in Google Scholar
Sugita, M., and Brenner, M. B. (1994). An unstable β2-microglobulin: major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J. Exp. Med.180, 2163–2171.10.1084/jem.180.6.2163Suche in Google Scholar PubMed PubMed Central
Suh, W., Cohen, D., Fruh, K., Wang, K., Peterson, P., and Williams, D. (1994). Interaction of MHC class I molecules with the transporter associated with antigen processing. Science264, 1322–1326.10.1126/science.8191286Suche in Google Scholar PubMed
Suh, W. K., Mitchell, E. K., Yang, Y., Peterson, P. A., Waneck, G. L., and Williams, D. B. (1996). MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide-regulated interaction with TAP via their extracellular domains. J. Exp. Med.184, 337–348.10.1084/jem.184.2.337Suche in Google Scholar PubMed PubMed Central
Suh, W. K., Derby, M. A., Cohen-Doyle, M. F., Schoenhals, G. J., Fruh, K., Berzofsky, J. A., and Williams, D. B. (1999). Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain α3 domain. J. Immunol.162, 1530–1540.10.4049/jimmunol.162.3.1530Suche in Google Scholar
Sun, J., Leahy, D. J., and Kavathas, P. B. (1995). Interaction between CD8 and major histocompatibility complex (MHC) class I mediated by multiple contact surfaces that include the α2 and α3 domains of MHC class I. J. Exp. Med.182, 1275–1280.10.1084/jem.182.5.1275Suche in Google Scholar
Tan, P., Kropshofer, H., Mandelboim, O., Bulbuc, N., Hammerling, G. J., and Momburg, F. (2002). Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J. Immunol.168, 1950–1960.10.4049/jimmunol.168.4.1950Suche in Google Scholar
Tanioka, T., Hattori, A., Masuda, S., Nomura, Y., Nakayama, H., Mizutani, S., and Tsujimoto, M. (2003). Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem.278, 32275–32283.10.1074/jbc.M305076200Suche in Google Scholar
Tector, M., Zhang, Q., and Salter, R. D. (1997). β2-Microglobulin and calnexin can independently promote folding and disulfide bond formation in class I histocompatibility proteins. Mol. Immunol.34, 401–408.10.1016/S0161-5890(97)00045-XSuche in Google Scholar
Teng, M. S., Stephens, R., Du Pasquier, L., Freeman, T., Lindquist, J. A., and Trowsdale, J. (2002). A human TAPBP (TAPASIN)-related gene, TAPBP-R. Eur. J. Immunol.32, 1059–1068.10.1002/1521-4141(200204)32:4<1059::AID-IMMU1059>3.0.CO;2-GSuche in Google Scholar
Tormo, J., Natarajan, K., Margulies, D. H., and Mariuzza, R. A. (1999). Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature402, 623–631.10.1038/45170Suche in Google Scholar
Townsend, A., Elliott, T., Cerundolo, V., Foster, L., Barber, B., and Tse, A. (1990). Assembly of MHC class I molecules analyzed in vitro. Cell62, 285–295.10.1016/0092-8674(90)90366-MSuche in Google Scholar
Trombetta, E. S., and Helenius, A. (1998). Lectins as chaperones in glycoprotein folding. Curr. Opin. Struct. Biol.8, 587–592.10.1016/S0959-440X(98)80148-6Suche in Google Scholar
Trombetta, E. S., and Helenius, A. (2000). Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J. Cell Biol.148, 1123–1129.10.1083/jcb.148.6.1123Suche in Google Scholar
Turnquist, H. R., Petersen, J. L., Vargas, S. E., McIlhaney, M. M., Bedows, E., Mayer, W. E., Grandea 3rd, A. G., Van Kaer, L., and Solheim, J. C. (2004). The Ig-like domain of tapasin influences intermolecular interactions. J. Immunol.172, 2976–2984.10.4049/jimmunol.172.5.2976Suche in Google Scholar
Turnquist, H. R., Vargas, S. E., McIlhaney, M. M., Li, S., Wang, P., and Solheim, J. C. (2002a). Calreticulin binds to the α1 domain of MHC class I independently of tapasin. Tissue Antigens59, 18–24.10.1034/j.1399-0039.2002.590104.xSuche in Google Scholar
Turnquist, H. R., Vargas, S. E., Schenk, E. L., McIlhaney, M. M., Reber, A. J., and Solheim, J. C. (2002b). The interface between tapasin and MHC class I: identification of amino acid residues in both proteins that influence their interaction. Immunol. Res.25, 261–269.10.1385/IR:25:3:261Suche in Google Scholar
van der Burg, S. H., Visseren, M. J., Brandt, R. M., Kast, W. M., and Melief, C. J. (1996). Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol.156, 3308–3314.10.4049/jimmunol.156.9.3308Suche in Google Scholar
van Leeuwen, J. E., and Kearse, K. P. (1996). Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes. Proc. Natl. Acad. Sci. USA93, 13997–14001.10.1073/pnas.93.24.13997Suche in Google Scholar
Vassilakos, A., Cohen-Doyle, M. F., Peterson, P. A., Jackson, M. R., and Williams, D. B. (1996). The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J.15, 1495–1506.10.1002/j.1460-2075.1996.tb00493.xSuche in Google Scholar
Vilches, C. (2003). MHC class I peptide binding and tapasin. J. Immunol.171, 3.10.4049/jimmunol.171.1.3Suche in Google Scholar
Walker, K. W., and Gilbert, H. F. (1997). Scanning and escape during protein-disulfide isomerase-assisted protein folding. J. Biol. Chem.272, 8845–8848.10.1074/jbc.272.14.8845Suche in Google Scholar
Wearsch, P. A., Jakob, C. A., Vallin, A., Dwek, R. A., Rudd, P. M., and Cresswell, P. (2004). MHC class I molecules expressed with monoglucosylated N-linked glycans bind calreticulin independently of their assembly status. J. Biol. Chem.279, 25112–25121.10.1074/jbc.M401721200Suche in Google Scholar
Wei, M. L., and Cresswell, P. (1992). HLA-A2 molecules in an antigen processing mutant cell contain signal sequence-derived peptides. Nature356, 443–446.10.1038/356443a0Suche in Google Scholar
Williams, A., Peh, C. A., and Elliott, T. (2002a). The cell biology of MHC class I antigen presentation. Tissue Antigens59, 3–17.10.1034/j.1399-0039.2002.590103.xSuche in Google Scholar
Williams, A. P., Peh, C. A., Purcell, A. W., McCluskey, J., and Elliott, T. (2002b). Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity16, 509–520.10.1016/S1074-7613(02)00304-7Suche in Google Scholar
Williams, D., Swiedler, S., and Hart, G. (1985). Intracellular transport of memebrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol.101, 725–734.10.1083/jcb.101.3.725Suche in Google Scholar
Wilson, I. A., and Bjorkman, P. J. (1998). Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Curr. Opin. Immunol.10, 67–73.10.1016/S0952-7915(98)80034-4Suche in Google Scholar
Yague, J., Alvarez, I., Rognan, D., Ramos, M., Vazquez, J., and de Castro, J. A. (2000). An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH2 terminus in vivo. J. Exp. Med.191, 2083–2092.10.1084/jem.191.12.2083Suche in Google Scholar PubMed PubMed Central
Yu, Y. Y., Myers, N. B., Hilbert, C. M., Harris, M. R., Balendiran, G. K., and Hansen, T. H. (1999a). Definition and transfer of a serological epitope specific for peptide-empty forms of MHC class I. Int. Immunol.11, 1897–1906.10.1093/intimm/11.12.1897Suche in Google Scholar PubMed
Yu, Y. Y., Turnquist, H. R., Myers, N. B., Balendiran, G. K., Hansen, T. H., and Solheim, J. C. (1999b). An extensive region of an MHC class I α2 domain loop influences interaction with the assembly complex. J. Immunol.163, 4427–4433.10.4049/jimmunol.163.8.4427Suche in Google Scholar
Zacharias, M., and Springer, S. (2004). Conformational flexibility of the MHC class I α1-α2 domain in peptide bound and free states: a molecular dynamics simulation study. Biophys. J., in press.10.1529/biophysj.104.044743Suche in Google Scholar PubMed PubMed Central
Zapun, A., Darby, N. J., Tessier, D. C., Michalak, M., Bergeron, J. J., and Thomas, D. Y. (1998). Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J. Biol. Chem.273, 6009–6012.10.1074/jbc.273.11.6009Suche in Google Scholar PubMed
Zarling, A. L., Luckey, C. J., Marto, J. A., White, F. M., Brame, C. J., Evans, A. M., Lehner, P. J., Cresswell, P., Shabanowitz, J., Hunt, D. F., and Engelhard, V. H. (2003). Tapasin is a facilitator, not an editor, of class I MHC Peptide binding. J. Immunol.171, 5287–5295.10.4049/jimmunol.171.10.5287Suche in Google Scholar PubMed
Zernich, D., Purcell, A. W., Macdonald, W. A., Kjer-Nielsen, L., Ely, L. K., Laham, N., Crockford, T., Mifsud, N. A., Bharadwaj, M., Chang, L. et al. (2004). Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J. Exp. Med.200, 13–24.10.1084/jem.20031680Suche in Google Scholar PubMed PubMed Central
Zhang, C., Anderson, A., and DeLisi, C. (1998). Structural principles that govern the peptide-binding motifs of class I MHC molecules. J. Mol. Biol.281, 929–947.10.1006/jmbi.1998.1982Suche in Google Scholar PubMed
© Walter de Gruyter
Artikel in diesem Heft
- Tapasin and other chaperones: models of the MHC class I loading complex
- Expression analysis of BCL2L12, a new member of apoptosis-related genes, in colon cancer
- SR-A1, a member of the human pre-mRNA splicing factor family, and its expression in colon cancer progression
- RNA interference by small hairpin RNAs synthesised under control of the human 7S K RNA promoter
- Kinetic characterization of phenol and aniline derivates as substrates of peroxidase
- Non-muscle α-actinin-4 interacts with plasminogen activator inhibitor type-1 (PAI-1)
- Oxidative modification of low-density lipoprotein: lipid peroxidation by myeloperoxidase in the presence of nitrite
- An apoptotic inducer, aralin, is a novel type II ribosome-inactivating protein from Aralia elata
- Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale
- Inhibition of sequestration of human B2 bradykinin receptor by phenylarsine oxide or sucrose allows determination of a receptor affinity shift and ligand dissociation in intact cells
- Effects of short-term chemical ablation of the GIP receptor on insulin secretion, islet morphology and glucose homeostasis in mice
- Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry
Artikel in diesem Heft
- Tapasin and other chaperones: models of the MHC class I loading complex
- Expression analysis of BCL2L12, a new member of apoptosis-related genes, in colon cancer
- SR-A1, a member of the human pre-mRNA splicing factor family, and its expression in colon cancer progression
- RNA interference by small hairpin RNAs synthesised under control of the human 7S K RNA promoter
- Kinetic characterization of phenol and aniline derivates as substrates of peroxidase
- Non-muscle α-actinin-4 interacts with plasminogen activator inhibitor type-1 (PAI-1)
- Oxidative modification of low-density lipoprotein: lipid peroxidation by myeloperoxidase in the presence of nitrite
- An apoptotic inducer, aralin, is a novel type II ribosome-inactivating protein from Aralia elata
- Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale
- Inhibition of sequestration of human B2 bradykinin receptor by phenylarsine oxide or sucrose allows determination of a receptor affinity shift and ligand dissociation in intact cells
- Effects of short-term chemical ablation of the GIP receptor on insulin secretion, islet morphology and glucose homeostasis in mice
- Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry