No Superoxide Dismutase Activity of Cellular Prion Protein in vivo
-
G. Hutter
, F.L. Heppner and A. Aguzzi
Abstract
Prion diseases are characterized by the deposition of PrPSc, an abnormal form of the cellular prion protein PrPc, which is encoded by the Prnp gene. PrPc is highly expressed on neurons and its function is unknown. Recombinant PrPc was claimed to possess superoxide dismutase (SOD) activity, and it was hypothesized that abrogation of this function may contribute to neurodegeneration in prion diseases. We tested this hypothesis in vivo by studying copper/zinc and manganese SOD activity in genetically defined crosses of mice lacking the Sod1 gene with mice lacking PrPc, and with hemizygous or homozygous tga20 transgenic mice overexpressing various levels of PrPc. We failed to detect any influence of the Prnp genotype and gene dosage on SOD1 or SOD2 activity in heart, spleen, brain, and synaptosomeenriched brain fractions. Control experiments included crosses of mice lacking or overexpressing PrP with mice overexpressing human Cu[2+]/Zn[2+]-superoxide dismutase, and confirmed that SOD enzymatic activity correlated exclusively with the gene dosage of bona fide human or murine SOD. We conclude that PrPc in vivo does not discernibly contribute to total SOD activity and does not possess an intrinsic dismutase activity.
Copyright © 2003 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Paper of the Year 2002
- Terminal Differentiation of Epithelia
- Use of Detergents to Study Membrane Rafts: The Good, the Bad, and the Ugly
- Protein Structure Similarity as Guiding Principle for Combinatorial Library Design
- The Making of a Professional Secretory Cell: Architectural and Functional Changes in the ER during B Lymphocyte Plasma Cell Differentiation
- No Superoxide Dismutase Activity of Cellular Prion Protein in vivo
- A Nucleosome-Free dG-dC-Rich Sequence Element Promotes Constitutive Transcription of the Essential Yeast RIO1 Gene
- Phosphatidylinositol-3,5-Bisphosphate Is a Potent and Selective Inhibitor of Acid Sphingomyelinase
- Function and Structure of N-Terminal and C-Terminal Domains of Calcineurin B Subunit
- Verification of the Interaction of a Tryparedoxin Peroxidase with Tryparedoxin by ESI-MS/MS
- Kinin-B1 Receptors in Ischaemia-Induced Pancreatitis: Functional Importance and Cellular Localisation
- Bioactivatable, Membrane-Permeant Analogs of Cyclic Nucleotides as Biological Tools for Growth Control of C6 Glioma Cells
- Human Cathepsin H: Deletion of the Mini-Chain Switches Substrate Specificity from Aminopeptidase to Endopeptidase
- Nitridergic Platelet Pathway Activation by Hementerin, a Metalloprotease from the Leech Haementeria depressa
Articles in the same Issue
- Paper of the Year 2002
- Terminal Differentiation of Epithelia
- Use of Detergents to Study Membrane Rafts: The Good, the Bad, and the Ugly
- Protein Structure Similarity as Guiding Principle for Combinatorial Library Design
- The Making of a Professional Secretory Cell: Architectural and Functional Changes in the ER during B Lymphocyte Plasma Cell Differentiation
- No Superoxide Dismutase Activity of Cellular Prion Protein in vivo
- A Nucleosome-Free dG-dC-Rich Sequence Element Promotes Constitutive Transcription of the Essential Yeast RIO1 Gene
- Phosphatidylinositol-3,5-Bisphosphate Is a Potent and Selective Inhibitor of Acid Sphingomyelinase
- Function and Structure of N-Terminal and C-Terminal Domains of Calcineurin B Subunit
- Verification of the Interaction of a Tryparedoxin Peroxidase with Tryparedoxin by ESI-MS/MS
- Kinin-B1 Receptors in Ischaemia-Induced Pancreatitis: Functional Importance and Cellular Localisation
- Bioactivatable, Membrane-Permeant Analogs of Cyclic Nucleotides as Biological Tools for Growth Control of C6 Glioma Cells
- Human Cathepsin H: Deletion of the Mini-Chain Switches Substrate Specificity from Aminopeptidase to Endopeptidase
- Nitridergic Platelet Pathway Activation by Hementerin, a Metalloprotease from the Leech Haementeria depressa