Startseite Calpain Function in the Differentiation of Mesenchymal Stem Cells
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Calpain Function in the Differentiation of Mesenchymal Stem Cells

  • Yukiko Yajima und Seiichi Kawashima
Veröffentlicht/Copyright: 1. Juni 2005
Biological Chemistry
Aus der Zeitschrift Band 383 Heft 5

Abstract

Calpain is a calciumactivated non lysosomal neutral thiol protease (EC 3.4.22.17) present in a wide variety of eukaryotic cells. Calpain is usually present as an inactive form and is activated by calcium ions and phospholipids. The ability of calpain to alter, by limited proteolysis, the activity or function of numerous cytoskeletal proteins, enzymes, and receptors suggests its involvement in various Ca2+ regulated cellular functions. In this review we focus on the differentiation of mesenchymal stem cells, such as the myoblastic, osteoblastic, chondrocytic, and adipocytic lineages, and the biological significance of calpain in its regulation. Calpain has been implicated in the differentiation of myoblasts through the turnover of glycoproteins. In preosteoblastic cells, calpain is important in mediating the proliferative and prodifferentiating effects of parathyroid hormone and bone morphogenetic proteins. For the differentiation of chondrocytes, calpain is involved in cartilagematrix mineralization. Furthermore, calpain is required for the differentiation of 3T3-L1 preadipocytes into adipocytes, involving the transcriptional activation of the C/EBPα gene and the degradation of the cyclindependent kinase inhibitor p27 during the mitotic clonal expansion phase of adipocyte differentiation. We summarize these regulatory effects of calpain on the differentiation of mesenchymal stem cells and speculate on the function and location of calpain in the differentiation processes.

:
Published Online: 2005-06-01
Published in Print: 2002-05-15

Copyright © 2002 by Walter de Gruyter GmbH & Co. KG

Artikel in diesem Heft

  1. Nobuhiko Katunuma: An Outstanding Scientific and Professional Career of a Warm-Hearted Person. Reflections on the Occasion of his 75th Birthday
  2. Structural and Functional Diversity of Connexin Genes in the Mouse and Human Genome
  3. Congopain from Trypanosoma congolense: Drug Target and Vaccine Candidate
  4. Biosynthesis of Lysosomal Proteinases in Health and Disease
  5. Calpain Function in the Differentiation of Mesenchymal Stem Cells
  6. Ku Antigen Supports Termination of Mammalian rDNA Replication by Transcription Termination Factor TTF-I
  7. Thyroid Stimulating Hormone Upregulates Secretion of Cathepsin B from Thyroid Epithelial Cells
  8. Selective Release of Calpain Produced αII-Spectrin (α-Fodrin) Breakdown Products by Acute Neuronal Cell Death
  9. Altered Storage of Proteases in Mast Cells from Mice Lacking Heparin: A Possible Role for Heparin Carboxypeptidase A Processing
  10. Clustering-Induced Signaling of CEACAM1 in PC12 Cells
  11. Spin Adducts of Superoxide, Alkoxyl, and Lipid-Derived Radicals with EMPO and Its Derivatives
  12. Glutathione S-Transferase of the Malarial Parasite Plasmodium falciparum: Characterization of a Potential Drug Target
  13. Analysis of the Structural Determinants for RNA Binding of the Human Protein AUF1/hnRNP D
  14. Effect of Cysteine Proteinase Inhibitors on Murine B16 Melanoma Cell Invasion in vitro
  15. Stage-Specific Antimalarial Activity of Cysteine Protease Inhibitors
  16. Epoxysuccinyl Peptide-Derived Cathepsin B Inhibitors: Modulating Membrane Permeability by Conjugation with the C-Terminal Heptapeptide Segment of Penetratin
  17. Design of Inhibitors for Human Tissue Kallikrein Using Non-Natural Aromatic and Basic Amino Acids
  18. Amyloid Fibril Formation by Human Stefin B in vitro: Immunogold Labelling and Comparison to Stefin A
  19. Lysosomal Peptidases and Glycosidases in Rheumatoid Arthritis
Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2002.079/html?lang=de
Button zum nach oben scrollen