Startseite Mathematik Chapter 9 Mathematically rigorous closure of spatially filtered NS PDE systems
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chapter 9 Mathematically rigorous closure of spatially filtered NS PDE systems

  • A. J. Baker und James D. Freels
Veröffentlichen auch Sie bei De Gruyter Brill
Error Freed CFD Mathematics
Ein Kapitel aus dem Buch Error Freed CFD Mathematics

Libretto

Error freed CFD mathematics alterations of NS/RaNS/LES PDE systems annihilateannihilate space-time discretization-generated truncation error algebraic instability and scalar member phase aliasing.

Herein rigorously derived analytical closure of spatially filtered NS PDE systems is the transformational alteration to, “… stagnationstagnation of CFD capability advancement … exists.”

As the derivation never invokes the word turbulentturbulent, analytically closed spatially filtered NS PDE systems are pertinent for arbitrary Reynolds number (Re) specification.

This error-freederror-freed CFD mathematics advancement renders obsolete the host of LES algorithms that replace resolved-unresolved scale interaction and unresolved scales mathematical rigor with heuristic “physics-based” subgrid scale tensor models.

Libretto

Error freed CFD mathematics alterations of NS/RaNS/LES PDE systems annihilateannihilate space-time discretization-generated truncation error algebraic instability and scalar member phase aliasing.

Herein rigorously derived analytical closure of spatially filtered NS PDE systems is the transformational alteration to, “… stagnationstagnation of CFD capability advancement … exists.”

As the derivation never invokes the word turbulentturbulent, analytically closed spatially filtered NS PDE systems are pertinent for arbitrary Reynolds number (Re) specification.

This error-freederror-freed CFD mathematics advancement renders obsolete the host of LES algorithms that replace resolved-unresolved scale interaction and unresolved scales mathematical rigor with heuristic “physics-based” subgrid scale tensor models.

Kapitel in diesem Buch

  1. Frontmatter I
  2. Dedication V
  3. Contents VII
  4. Prologue 1
  5. Chapter 1 Why this monograph? 3
  6. Chapter 2 A brief pertinent CFD chronology 6
  7. Chapter 3 Fluid mechanics conservation principles, PDE notation 13
  8. Part A: Space-time discretization error annihilation, algebraic instability
  9. Chapter 4 Legacy CFD difference algebra derived stabilizations, O(h2) truncation error annihilation (TEA) theory, NS error freed PDE mathematics, monotonicity, stability 21
  10. Chapter 5 Navier-Stokes error freed CFD mathematics, continuous weak formulation, FE theory, asymptotic convergence, error estimates, validations, monotone continuum shock interpolation 42
  11. Chapter 6 Time-averaged (RaNS) Navier-Stokes error freed CFD weak formulation, theory, asymptotic convergence, validations 73
  12. Chapter 7 Annihilation of NS/RaNS PDE space-time discretization-induced O(m2, m3) phase dispersion and Ot3) truncation errors 97
  13. Chapter 8 Hypersonics, aerothermodynamics, radiation CFD issues 109
  14. Part B: Analytical closure of spatially filtered NS PDE systems
  15. Chapter 9 Mathematically rigorous closure of spatially filtered NS PDE systems 125
  16. Chapter 10 FaNS theory O(1;δ2) PDE system rendered bounded domain well-posed 139
  17. Chapter 11 Validation, FaNS, NS PDE systems same code/mesh predictions,100<Re<4,000 159
  18. Chapter 12 Validation, ∀ Re pertinent FaNS theory prediction of laminar BL profile O(1) velocity insipient transition, separation, turbulent BL profile reattachment, then relaminarization, Re ≈ 12,000 175
  19. Chapter 13 Epilogue, error freed CFD mathematics continuing impact 201
  20. Nomenclature
  21. Appendix A: The finite element toolbox 207
  22. Appendix B: Theory, weak formulation optimal continuous Galerkin FE p = 1,2,3 basis CFD algorithms 221
  23. Appendix C: Error freed CFD mathematics altered continuous Galerkin FE basis algorithm and Newton jacobian matrix statements 233
  24. Subject index 345
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783112206430-010/html
Button zum nach oben scrollen