Statistical inverse learning problems with random observations
-
Abhishake
, Tapio Helin and Nicole Mücke
Abstract
We provide an overview of recent progress in statistical inverse problems with random experimental design, covering both linear and non-linear inverse problems. Different regularization schemes have been studied to produce robust and stable solutions. We discuss recent results in spectral regularization methods and regularization by projection, exploring both approaches within the context of Hilbert scales and presenting new insights, particularly in regularization by projection. Additionally, we overview recent advancements in regularization using convex penalties. Convergence rates are analyzed in terms of the sample size in a probabilistic sense, yielding minimax rates in both expectation and probability. To achieve these results, the structure of reproducing kernel Hilbert spaces is leveraged to establish minimax rates in the statistical learning setting. We detail the assumptions underpinning these key elements of our proofs. Finally, we demonstrate the application of these concepts to non-linear inverse problems in pharmacokinetic/pharmacodynamic (PK/PD) models, where the task is to predict changes in drug concentrations in patients.
Abstract
We provide an overview of recent progress in statistical inverse problems with random experimental design, covering both linear and non-linear inverse problems. Different regularization schemes have been studied to produce robust and stable solutions. We discuss recent results in spectral regularization methods and regularization by projection, exploring both approaches within the context of Hilbert scales and presenting new insights, particularly in regularization by projection. Additionally, we overview recent advancements in regularization using convex penalties. Convergence rates are analyzed in terms of the sample size in a probabilistic sense, yielding minimax rates in both expectation and probability. To achieve these results, the structure of reproducing kernel Hilbert spaces is leveraged to establish minimax rates in the statistical learning setting. We detail the assumptions underpinning these key elements of our proofs. Finally, we demonstrate the application of these concepts to non-linear inverse problems in pharmacokinetic/pharmacodynamic (PK/PD) models, where the task is to predict changes in drug concentrations in patients.
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495