Learned regularization for inverse problems
-
Martin Burger
and Samira Kabri
Abstract
In this chapter, we provide a theoretically founded investigation of state-ofthe- art learning approaches for inverse problems from the point of view of spectral reconstruction operators. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular, we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows highlighting and comparing the specific behavior of the different paradigms in the infinite-dimensional limit.
Abstract
In this chapter, we provide a theoretically founded investigation of state-ofthe- art learning approaches for inverse problems from the point of view of spectral reconstruction operators. We give an extended definition of regularization methods and their convergence in terms of the underlying data distributions, which paves the way for future theoretical studies. Based on a simple spectral learning model previously introduced for supervised learning, we investigate some key properties of different learning paradigms for inverse problems, which can be formulated independently of specific architectures. In particular, we investigate the regularization properties, bias, and critical dependence on training data distributions. Moreover, our framework allows highlighting and comparing the specific behavior of the different paradigms in the infinite-dimensional limit.
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495