Learned reconstruction methods for inverse problems: sample error estimates
-
Luca Ratti
Abstract
Learning-based and data-driven techniques have recently become a subject of primary interest in the field of reconstruction and regularization of inverse problems. Besides the development of novel methods, yielding excellent results in several applications, their theoretical investigation has attracted growing interest, e. g., on the topics of reliability, stability, and interpretability. In this chapter, a general framework is described, allowing us to interpret many of these techniques in the context of statistical learning. This is not intended to provide a complete survey of existing methods, but rather to put them in a working perspective, which naturally allows their theoretical treatment. The main goal of this dissertation is thereby to address the generalization properties of learned reconstruction methods, and specifically to perform their sample error analysis. This task, well developed in statistical learning, consists of estimating the dependence of the learned operators with respect to the data employed for their training. A rather general strategy is proposed, whose assumptions are met for a large class of inverse problems and learned methods, as depicted via a selection of examples.
Abstract
Learning-based and data-driven techniques have recently become a subject of primary interest in the field of reconstruction and regularization of inverse problems. Besides the development of novel methods, yielding excellent results in several applications, their theoretical investigation has attracted growing interest, e. g., on the topics of reliability, stability, and interpretability. In this chapter, a general framework is described, allowing us to interpret many of these techniques in the context of statistical learning. This is not intended to provide a complete survey of existing methods, but rather to put them in a working perspective, which naturally allows their theoretical treatment. The main goal of this dissertation is thereby to address the generalization properties of learned reconstruction methods, and specifically to perform their sample error analysis. This task, well developed in statistical learning, consists of estimating the dependence of the learned operators with respect to the data employed for their training. A rather general strategy is proposed, whose assumptions are met for a large class of inverse problems and learned methods, as depicted via a selection of examples.
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495