Startseite Mathematik Rings with q-torsionfree canonical modules
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rings with q-torsionfree canonical modules

  • Naoki Endo , Laura Ghezzi , Shiro Goto , Jooyoun Hong , Shin-ichiro Iai , Toshinori Kobayashi , Naoyuki Matsuoka und Ryo Takahashi
Veröffentlichen auch Sie bei De Gruyter Brill
Commutative Algebra
Ein Kapitel aus dem Buch Commutative Algebra

Abstract

Let A be a Noetherian local ring with canonical module K A . We characterize A when K A is a torsionless, reflexive, or q-torsionfree module for an integer q 3 . If A is a Cohen–Macaulay ring, H.-B. Foxby proved in 1974 that the A-module K A is q-torsionfree if and only if the ring A is q-Gorenstein. With mild assumptions, we provide a generalization of Foxby’s result to arbitrary Noetherian local rings admitting the canonical module. In particular, since the reflexivity of the canonical module is closely related to the ring being Gorenstein in low codimension, we also explore quasinormal rings, introduced by W. V. Vasconcelos. We provide several examples as well.

Abstract

Let A be a Noetherian local ring with canonical module K A . We characterize A when K A is a torsionless, reflexive, or q-torsionfree module for an integer q 3 . If A is a Cohen–Macaulay ring, H.-B. Foxby proved in 1974 that the A-module K A is q-torsionfree if and only if the ring A is q-Gorenstein. With mild assumptions, we provide a generalization of Foxby’s result to arbitrary Noetherian local rings admitting the canonical module. In particular, since the reflexivity of the canonical module is closely related to the ring being Gorenstein in low codimension, we also explore quasinormal rings, introduced by W. V. Vasconcelos. We provide several examples as well.

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110999365-014/html?lang=de
Button zum nach oben scrollen