Startseite Mathematik A difference set construction of Turyn adapted to semi-direct products
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A difference set construction of Turyn adapted to semi-direct products

  • D. B. Meisner
Veröffentlichen auch Sie bei De Gruyter Brill

Kapitel in diesem Buch

  1. Frontmatter I
  2. Preface V
  3. PART I GROUPS AND GEOMETRY
  4. On flag-transitive c.c*-geometries 3
  5. On the 1-cohomology of the groups SL4(2n), SU4(2n), and Spίn7(2n) 23
  6. About a conjecture of Guralnick and Thompson 43
  7. On the Suzuki groups and the outer automorphisms of S6 55
  8. Note on Lie algebras, finite groups and finite geometries 73
  9. m-systems and the BLT property 83
  10. A block complex collapsing to the Brauer tree 93
  11. Some sporadic geometries 99
  12. The uniqueness case 117
  13. PART II DIFFERENCE SETS
  14. Exponent bounds for a family of abelian difference sets 129
  15. A survey of Hadamard difference sets 145
  16. Difference sets in nilpotent groups with large Frattini quotient: geometric methods and (375, 34, 3) 157
  17. A difference set construction of Turyn adapted to semi-direct products 169
  18. Difference sets in groups of order 4p4 175
  19. A survey on relative difference sets 195
  20. Williamson matrices and difference sets 233
  21. Note on Paley type partial difference sets 239
  22. PART ΙII THE MONSTER
  23. Anti-bracket formalism with the Kahler geometry 247
  24. Singular values of Thompson series 255
  25. Understanding groups like Γ0(N) 327
  26. The ̣√Monster construction 345
  27. On vertex operator algebras as sl2-modules 349
  28. Lattices and generalized Hecke operators 363
  29. Codes, loops and p-locals 369
  30. A generalization of Kac-Moody algebras 377
  31. A note on the elliptic curves of Harada-Lang 409
  32. Ternary codes and ℤ3-orbifold constructions of conformal field theories 411
  33. Non-monstrous moonshine 433
  34. Monstrous Moonshine and orbifolds 443
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110893106.169/html
Button zum nach oben scrollen