Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
§7 Isometric transformations
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Frontmatter I
-
Chapter I. Möbius transformations and non-euclidean geometry.
- §1 Pencils of circles - inversive geometry 1
- §2 Cross-ratio 4
- §3 Möbius transformations, direct and reversed 6
- §4 Invariant points and classification of Möbius transformations 8
- §5 Complex distance of two pairs of points 14
- §6 Non-euclidean metric 18
- §7 Isometric transformations 23
- §8 Non-euclidean trigonometry 27
- §9 Products and commutators of motions 43
-
Chapter II. Discontinuous groups of motions and reversions.
- §10 The concept of discontinuity 58
- §11 Groups with invariant points or lines 70
- §12 A discontinuity theorem 78
- §13 ℱ-groups. Fundamental set and limit set 82
- §14 The convex domain of an ℱ-group. Characteristic and isometric neighbourhood 95
- §15 Quasi-compactness modulo ℱ and finite generation of ℱ 115
-
Chapter III. Surfaces associated with discontinuous groups.
- §16 The surfaces D modulo ℭ and K(ℱ) modulo ℱ 127
- §17 Area and type numbers 135
-
Chapter IV. Decompositions of groups.
- §18 Composition of groups 153
- §19 Decomposition of groups 174
- §20 Decompositions of ℱ-groups containing reflections 196
- §21 Elementary groups and elementary surfaces 213
- §22 Complete decomposition and normal form in the case of quasi-compactness 242
- §23 Exhaustion in the case of non-quasi-compactness 270
-
Chapter V. Isomorphism and homeomorphism.
- §24 Topological and geometrical isomorphism 283
- §25 Topological and geometrical homeomorphism 308
- §26 Construction of g-mappings. Metric parameters. Congruent groups 318
- Symbols and definitions 349
- Alphabets 353
- Bibliography 355
- Index 361
Kapitel in diesem Buch
- Frontmatter I
-
Chapter I. Möbius transformations and non-euclidean geometry.
- §1 Pencils of circles - inversive geometry 1
- §2 Cross-ratio 4
- §3 Möbius transformations, direct and reversed 6
- §4 Invariant points and classification of Möbius transformations 8
- §5 Complex distance of two pairs of points 14
- §6 Non-euclidean metric 18
- §7 Isometric transformations 23
- §8 Non-euclidean trigonometry 27
- §9 Products and commutators of motions 43
-
Chapter II. Discontinuous groups of motions and reversions.
- §10 The concept of discontinuity 58
- §11 Groups with invariant points or lines 70
- §12 A discontinuity theorem 78
- §13 ℱ-groups. Fundamental set and limit set 82
- §14 The convex domain of an ℱ-group. Characteristic and isometric neighbourhood 95
- §15 Quasi-compactness modulo ℱ and finite generation of ℱ 115
-
Chapter III. Surfaces associated with discontinuous groups.
- §16 The surfaces D modulo ℭ and K(ℱ) modulo ℱ 127
- §17 Area and type numbers 135
-
Chapter IV. Decompositions of groups.
- §18 Composition of groups 153
- §19 Decomposition of groups 174
- §20 Decompositions of ℱ-groups containing reflections 196
- §21 Elementary groups and elementary surfaces 213
- §22 Complete decomposition and normal form in the case of quasi-compactness 242
- §23 Exhaustion in the case of non-quasi-compactness 270
-
Chapter V. Isomorphism and homeomorphism.
- §24 Topological and geometrical isomorphism 283
- §25 Topological and geometrical homeomorphism 308
- §26 Construction of g-mappings. Metric parameters. Congruent groups 318
- Symbols and definitions 349
- Alphabets 353
- Bibliography 355
- Index 361