Startseite Mathematik §7 Isometric transformations
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

§7 Isometric transformations

Veröffentlichen auch Sie bei De Gruyter Brill

Kapitel in diesem Buch

  1. Frontmatter I
  2. Chapter I. Möbius transformations and non-euclidean geometry.
  3. §1 Pencils of circles - inversive geometry 1
  4. §2 Cross-ratio 4
  5. §3 Möbius transformations, direct and reversed 6
  6. §4 Invariant points and classification of Möbius transformations 8
  7. §5 Complex distance of two pairs of points 14
  8. §6 Non-euclidean metric 18
  9. §7 Isometric transformations 23
  10. §8 Non-euclidean trigonometry 27
  11. §9 Products and commutators of motions 43
  12. Chapter II. Discontinuous groups of motions and reversions.
  13. §10 The concept of discontinuity 58
  14. §11 Groups with invariant points or lines 70
  15. §12 A discontinuity theorem 78
  16. §13 ℱ-groups. Fundamental set and limit set 82
  17. §14 The convex domain of an ℱ-group. Characteristic and isometric neighbourhood 95
  18. §15 Quasi-compactness modulo ℱ and finite generation of ℱ 115
  19. Chapter III. Surfaces associated with discontinuous groups.
  20. §16 The surfaces D modulo ℭ and K(ℱ) modulo ℱ 127
  21. §17 Area and type numbers 135
  22. Chapter IV. Decompositions of groups.
  23. §18 Composition of groups 153
  24. §19 Decomposition of groups 174
  25. §20 Decompositions of ℱ-groups containing reflections 196
  26. §21 Elementary groups and elementary surfaces 213
  27. §22 Complete decomposition and normal form in the case of quasi-compactness 242
  28. §23 Exhaustion in the case of non-quasi-compactness 270
  29. Chapter V. Isomorphism and homeomorphism.
  30. §24 Topological and geometrical isomorphism 283
  31. §25 Topological and geometrical homeomorphism 308
  32. §26 Construction of g-mappings. Metric parameters. Congruent groups 318
  33. Symbols and definitions 349
  34. Alphabets 353
  35. Bibliography 355
  36. Index 361
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110891355.23/html?srsltid=AfmBOoqd0MHDpEQFn8FNyrg80P3KLfzTfIiNFe3oNlcgORXtw91NRT9O
Button zum nach oben scrollen