Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
§19 Decomposition of groups
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Frontmatter I
-
Chapter I. Möbius transformations and non-euclidean geometry.
- §1 Pencils of circles - inversive geometry 1
- §2 Cross-ratio 4
- §3 Möbius transformations, direct and reversed 6
- §4 Invariant points and classification of Möbius transformations 8
- §5 Complex distance of two pairs of points 14
- §6 Non-euclidean metric 18
- §7 Isometric transformations 23
- §8 Non-euclidean trigonometry 27
- §9 Products and commutators of motions 43
-
Chapter II. Discontinuous groups of motions and reversions.
- §10 The concept of discontinuity 58
- §11 Groups with invariant points or lines 70
- §12 A discontinuity theorem 78
- §13 ℱ-groups. Fundamental set and limit set 82
- §14 The convex domain of an ℱ-group. Characteristic and isometric neighbourhood 95
- §15 Quasi-compactness modulo ℱ and finite generation of ℱ 115
-
Chapter III. Surfaces associated with discontinuous groups.
- §16 The surfaces D modulo ℭ and K(ℱ) modulo ℱ 127
- §17 Area and type numbers 135
-
Chapter IV. Decompositions of groups.
- §18 Composition of groups 153
- §19 Decomposition of groups 174
- §20 Decompositions of ℱ-groups containing reflections 196
- §21 Elementary groups and elementary surfaces 213
- §22 Complete decomposition and normal form in the case of quasi-compactness 242
- §23 Exhaustion in the case of non-quasi-compactness 270
-
Chapter V. Isomorphism and homeomorphism.
- §24 Topological and geometrical isomorphism 283
- §25 Topological and geometrical homeomorphism 308
- §26 Construction of g-mappings. Metric parameters. Congruent groups 318
- Symbols and definitions 349
- Alphabets 353
- Bibliography 355
- Index 361
Kapitel in diesem Buch
- Frontmatter I
-
Chapter I. Möbius transformations and non-euclidean geometry.
- §1 Pencils of circles - inversive geometry 1
- §2 Cross-ratio 4
- §3 Möbius transformations, direct and reversed 6
- §4 Invariant points and classification of Möbius transformations 8
- §5 Complex distance of two pairs of points 14
- §6 Non-euclidean metric 18
- §7 Isometric transformations 23
- §8 Non-euclidean trigonometry 27
- §9 Products and commutators of motions 43
-
Chapter II. Discontinuous groups of motions and reversions.
- §10 The concept of discontinuity 58
- §11 Groups with invariant points or lines 70
- §12 A discontinuity theorem 78
- §13 ℱ-groups. Fundamental set and limit set 82
- §14 The convex domain of an ℱ-group. Characteristic and isometric neighbourhood 95
- §15 Quasi-compactness modulo ℱ and finite generation of ℱ 115
-
Chapter III. Surfaces associated with discontinuous groups.
- §16 The surfaces D modulo ℭ and K(ℱ) modulo ℱ 127
- §17 Area and type numbers 135
-
Chapter IV. Decompositions of groups.
- §18 Composition of groups 153
- §19 Decomposition of groups 174
- §20 Decompositions of ℱ-groups containing reflections 196
- §21 Elementary groups and elementary surfaces 213
- §22 Complete decomposition and normal form in the case of quasi-compactness 242
- §23 Exhaustion in the case of non-quasi-compactness 270
-
Chapter V. Isomorphism and homeomorphism.
- §24 Topological and geometrical isomorphism 283
- §25 Topological and geometrical homeomorphism 308
- §26 Construction of g-mappings. Metric parameters. Congruent groups 318
- Symbols and definitions 349
- Alphabets 353
- Bibliography 355
- Index 361