Startseite Mathematik Locally conformally Kählerian structures on complex manifolds and uniformization
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Locally conformally Kählerian structures on complex manifolds and uniformization

  • Yoshinobu Kamishima
Veröffentlichen auch Sie bei De Gruyter Brill
Geometry, Topology and Physics
Ein Kapitel aus dem Buch Geometry, Topology and Physics

Kapitel in diesem Buch

  1. I-IV I
  2. Preface V
  3. Table of Contents VII
  4. Program of the Workshop IX
  5. Compact cohomogeneity one Riemannian manifolds of positive Euler characteristic and quaternionic Kahler manifolds 1
  6. Quasiconformality and geometrical finiteness in Carnot-Caratheodory and negatively curved spaces 35
  7. Special submanifolds of S6 with its G2 geometry 59
  8. Some geometrical aspects of the 2-dimensional Toda equations 69
  9. A new look at the vortex equations and dimensional reduction 83
  10. The universal cover of an affine three-manifold with holonomy of discompactedness two 107
  11. Geometric quantization for the moduli space of vector bundles with parabolic structure 119
  12. The eta invariant, manifolds of positive scalar curvature, and equivariant bordism 157
  13. Locally conformally Kählerian structures on complex manifolds and uniformization 173
  14. A topological method for finding non-absolute minima for the Yang-Mills functional with Dirichlet data 191
  15. Some remarks on equivariant harmonic and non-holomorphic maps in Riemannian manifolds 201
  16. Focal decomposition in geometry, arithmetic and physics 213
  17. Simple type is not a boundary phenomenon 233
  18. On the homology cobordism group of homology 3-spheres 245
  19. θ-vacua in the light front quantized Schwinger model 259
  20. Clifford algebras and Witten's monopole equations 277
  21. Sobolev classes and quasi-conformal mappings on Carnot-Caratheodory spaces 301
  22. Harmonic maps and morphisms in 4 dimensions 317
  23. Open Problems Session 335
  24. List of Contributors 341
  25. List of Participants 345
Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110805055.173/html
Button zum nach oben scrollen