Home Physical Sciences 11 Computational studies of biologically active alkaloids of plant origin: an overview
Chapter
Licensed
Unlicensed Requires Authentication

11 Computational studies of biologically active alkaloids of plant origin: an overview

  • Mireille K. Bilonda and Liliana Mammino
Become an author with De Gruyter Brill
Computational Chemistry
This chapter is in the book Computational Chemistry

Abstract

Computational studies nowadays constitute a crucial source of information for drug development, because they provide information on many molecular properties and also enable predictions of the properties of not-yet-synthesized compounds. Alkaloids are a vast group of natural products exhibiting a variety of biological activities, many of which are interesting for drug development. On the other hand, computational studies of biologically active alkaloids have so far mostly focused on few particularly relevant or “popular” molecules, such as quinine, caffeine, or cocaine, with only few works on the other molecules. The present work offers an overview of existing computational studies on alkaloid molecules, from the earliest ones to the most recent, and considering all the theoretical approaches with which studies have been performed (both quantum mechanics and molecular dynamics). The considered studies are grouped according to their objectives and outcomes, such as conformational analysis of alkaloid molecules, effects of selected solvents on their properties, docking studies aimed at better understanding of the interactions between alkaloid molecules and biological targets, studies focusing on structure activity relationships, and computational studies performed to confirm experimental results. It is concluded that it would be important that computational studies on many other alkaloid molecules are performed and their results made available, covering their different classes as well as the variety of their biological activities, to attain better understanding of the properties not only of individual molecules, but also of groups of related molecules and of the overall alkaloids family.

Abstract

Computational studies nowadays constitute a crucial source of information for drug development, because they provide information on many molecular properties and also enable predictions of the properties of not-yet-synthesized compounds. Alkaloids are a vast group of natural products exhibiting a variety of biological activities, many of which are interesting for drug development. On the other hand, computational studies of biologically active alkaloids have so far mostly focused on few particularly relevant or “popular” molecules, such as quinine, caffeine, or cocaine, with only few works on the other molecules. The present work offers an overview of existing computational studies on alkaloid molecules, from the earliest ones to the most recent, and considering all the theoretical approaches with which studies have been performed (both quantum mechanics and molecular dynamics). The considered studies are grouped according to their objectives and outcomes, such as conformational analysis of alkaloid molecules, effects of selected solvents on their properties, docking studies aimed at better understanding of the interactions between alkaloid molecules and biological targets, studies focusing on structure activity relationships, and computational studies performed to confirm experimental results. It is concluded that it would be important that computational studies on many other alkaloid molecules are performed and their results made available, covering their different classes as well as the variety of their biological activities, to attain better understanding of the properties not only of individual molecules, but also of groups of related molecules and of the overall alkaloids family.

Chapters in this book

  1. Frontmatter I
  2. Preface of the Book of Proceedings of the Virtual Conference on Computational Science (VCCS-2019) V
  3. Contents VII
  4. Corresponding authors XIII
  5. 1 Structural and spectroscopic properties of 3-halogenobenzaldehydes: DFT and TDDFT simulations 1
  6. 2 Atomistic insight into the significantly enhanced photovoltaic cells of monolayer GaTe2 via two-dimensional van der Waals heterostructures engineering 15
  7. 3 Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study 33
  8. 4 Comparative studies of excited state intramolecular proton transfer (ESIPT) and azohydrazone tautomerism in naphthalene-based fluorescent acid azo dyes by computational study 61
  9. 5 Theoretical examination of efficiency of anthocyanidins as sensitizers in dye-sensitized solar cells 83
  10. 6 Selection of oxypeucedanin as a potential antagonist from molecular docking analysis of HSP90 103
  11. 7 Mechanistic insight into the interactions between thiazolidinedione derivatives and PTP-1B combining 3D QSAR andmolecular docking in the treatment of type 2 diabetes 113
  12. 8 Review of research of nanocomposites based on graphene quantum dots 135
  13. 9 A computational study of the SNAr reaction of 2-ethoxy-3,5-dinitropyridine and 2-methoxy-3, 5-dinitropyridine with piperidine 161
  14. 10 Synthesis, characterization and computational studies of 1,3-bis[(E)-furan-2-yl)methylene]urea and 1,3-bis[(E)-furan-2-yl)methylene]thiourea 177
  15. 11 Computational studies of biologically active alkaloids of plant origin: an overview 187
  16. 12 Investigating the biological actions of some Schiff bases using density functional theory study 219
  17. 13 Molecular mechanics approaches for rational drug design: forcefields and solvation models 233
  18. Index 255
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/9783110682045-011/html
Scroll to top button