Home Physical Sciences 10 Synthesis, characterization and computational studies of 1,3-bis[(E)-furan-2-yl)methylene]urea and 1,3-bis[(E)-furan-2-yl)methylene]thiourea
Chapter
Licensed
Unlicensed Requires Authentication

10 Synthesis, characterization and computational studies of 1,3-bis[(E)-furan-2-yl)methylene]urea and 1,3-bis[(E)-furan-2-yl)methylene]thiourea

  • Kazeem Adelani Alabi , Ibrahim Olasegun Abdulsalami , Moriam Dasola Adeoye , Shukurat Modupe Aderinto and Rasheed Adewale Adigun
Become an author with De Gruyter Brill
Computational Chemistry
This chapter is in the book Computational Chemistry

Abstract

Urea and thiourea derivatives: 1,3-bis[(E)-furan-2-yl)methylene]urea (BFMU) and 1,3-bis[(E)-furan-2-yl)methylene]thiourea (BFMT) were synthesized and characterized by spectrometry analyses (UV, IR, 1H NMR and 13C NMR). They were screened for antibacterial (Salmonella typhi, Staphylococcus aureus, Pseudomonas aeruginosa, Xanthomonas axonopodis and Streptococcus bovis) and antifungal (Fusarium oxysporum, Colletotrichum gloeosporioides and Cercospora zeae-maydis) activities. Quantum chemical calculations of frontier molecular orbital energies (EHOMO and ELUMO), and their associated global parameters were carried out by DFT levels of theory, with complete relaxation in the potential energy surface using 6-31G* basis set (DFT/B3LYP/6- 31G*). Azomethine functional groups (C=N) appeared at δ 7.6 ppm and δ 7.0 ppm in the proton spectra, the peaks between δ 105 and δ 160 ppm of 13C spectra represent the methylene carbons (C=C). BFMU is a better inhibitor of P. aeruginosa and S. bovis, while BFMT is a better inhibitor of S. typhi, S. aureus and X. axonopodis and the fungi isolates (F. oxysporum, C. gloeosporioides and C. zeae-maydis) used. The global parameters agreed favorably with the experimental results, indicating the higher activity of BFMT.

Abstract

Urea and thiourea derivatives: 1,3-bis[(E)-furan-2-yl)methylene]urea (BFMU) and 1,3-bis[(E)-furan-2-yl)methylene]thiourea (BFMT) were synthesized and characterized by spectrometry analyses (UV, IR, 1H NMR and 13C NMR). They were screened for antibacterial (Salmonella typhi, Staphylococcus aureus, Pseudomonas aeruginosa, Xanthomonas axonopodis and Streptococcus bovis) and antifungal (Fusarium oxysporum, Colletotrichum gloeosporioides and Cercospora zeae-maydis) activities. Quantum chemical calculations of frontier molecular orbital energies (EHOMO and ELUMO), and their associated global parameters were carried out by DFT levels of theory, with complete relaxation in the potential energy surface using 6-31G* basis set (DFT/B3LYP/6- 31G*). Azomethine functional groups (C=N) appeared at δ 7.6 ppm and δ 7.0 ppm in the proton spectra, the peaks between δ 105 and δ 160 ppm of 13C spectra represent the methylene carbons (C=C). BFMU is a better inhibitor of P. aeruginosa and S. bovis, while BFMT is a better inhibitor of S. typhi, S. aureus and X. axonopodis and the fungi isolates (F. oxysporum, C. gloeosporioides and C. zeae-maydis) used. The global parameters agreed favorably with the experimental results, indicating the higher activity of BFMT.

Chapters in this book

  1. Frontmatter I
  2. Preface of the Book of Proceedings of the Virtual Conference on Computational Science (VCCS-2019) V
  3. Contents VII
  4. Corresponding authors XIII
  5. 1 Structural and spectroscopic properties of 3-halogenobenzaldehydes: DFT and TDDFT simulations 1
  6. 2 Atomistic insight into the significantly enhanced photovoltaic cells of monolayer GaTe2 via two-dimensional van der Waals heterostructures engineering 15
  7. 3 Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study 33
  8. 4 Comparative studies of excited state intramolecular proton transfer (ESIPT) and azohydrazone tautomerism in naphthalene-based fluorescent acid azo dyes by computational study 61
  9. 5 Theoretical examination of efficiency of anthocyanidins as sensitizers in dye-sensitized solar cells 83
  10. 6 Selection of oxypeucedanin as a potential antagonist from molecular docking analysis of HSP90 103
  11. 7 Mechanistic insight into the interactions between thiazolidinedione derivatives and PTP-1B combining 3D QSAR andmolecular docking in the treatment of type 2 diabetes 113
  12. 8 Review of research of nanocomposites based on graphene quantum dots 135
  13. 9 A computational study of the SNAr reaction of 2-ethoxy-3,5-dinitropyridine and 2-methoxy-3, 5-dinitropyridine with piperidine 161
  14. 10 Synthesis, characterization and computational studies of 1,3-bis[(E)-furan-2-yl)methylene]urea and 1,3-bis[(E)-furan-2-yl)methylene]thiourea 177
  15. 11 Computational studies of biologically active alkaloids of plant origin: an overview 187
  16. 12 Investigating the biological actions of some Schiff bases using density functional theory study 219
  17. 13 Molecular mechanics approaches for rational drug design: forcefields and solvation models 233
  18. Index 255
Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/9783110682045-010/html?lang=en
Scroll to top button