8. Influence of drilling parameters on the thrust force and mechanical properties of biodegradable particleboard composite panels: A review
-
Rahul Kumar
, Sumit Bhowmik und Rahul Jayasval
Abstract
The present work is focused to provide an overview of the influence of drilling parameters on thrust force and mechanical properties of biodegradable particleboard composite panels. The usage of particleboard composite material is augmented substantially in the past few decades and many research works focused on the machining of such materials. Among the numerous conventional machining, drilling is the most commonly used procedure for machining of particleboard, whereas milling and turning are less frequently used in particleboard application. The different machining parameters like feed rate, spindle speed, and drill bit diameter/point angle are found to have major influence on the thrust force during drilling operation. In the present work, a detailed review has been presented considering the effect of machining parameters in the drilling of particleboard. In addition, summarized outlines are presented on the surface characteristics of the hole produced in drilling operation and use of optimization techniques such as Taguchi method, which is a response surface methodology to find the optimized delamination factor. The arrangement of maximum spindle speed with low feed rate was established as an optimum arrangement to produce the minimum thrust force during the drilling operation of particleboard composite panels.
Abstract
The present work is focused to provide an overview of the influence of drilling parameters on thrust force and mechanical properties of biodegradable particleboard composite panels. The usage of particleboard composite material is augmented substantially in the past few decades and many research works focused on the machining of such materials. Among the numerous conventional machining, drilling is the most commonly used procedure for machining of particleboard, whereas milling and turning are less frequently used in particleboard application. The different machining parameters like feed rate, spindle speed, and drill bit diameter/point angle are found to have major influence on the thrust force during drilling operation. In the present work, a detailed review has been presented considering the effect of machining parameters in the drilling of particleboard. In addition, summarized outlines are presented on the surface characteristics of the hole produced in drilling operation and use of optimization techniques such as Taguchi method, which is a response surface methodology to find the optimized delamination factor. The arrangement of maximum spindle speed with low feed rate was established as an optimum arrangement to produce the minimum thrust force during the drilling operation of particleboard composite panels.
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents XI
- List of contributors XIII
- Editors’ biographies XVII
-
Part I: Introduction and Material
- 1. An insight into plant-based biodegradable composites 3
- 2. Corn (maize) – its fibers, polymers, composites, and applications: A review 13
-
Part II: Manufacturing and Properties
- 3. Production of biodegradable composites from agricultural waste: A review 39
- 4. Natural fiber-based biocomposites: Effect of orientation on mechanical properties 49
- 5. Mechanical properties of bamboo yarn: A biodegradable composite material for structural works 81
- 6. Aggrandized flexural properties of assorted natural biological materials 111
- 7. Hygrothermoelastic behaviour Natural fibers based composites: Mechanisms and formalism 141
-
Part III: Machining and Application
- 8. Influence of drilling parameters on the thrust force and mechanical properties of biodegradable particleboard composite panels: A review 167
- 9. A numerical study of rotating functionally graded annular fin 183
- Index 193
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents XI
- List of contributors XIII
- Editors’ biographies XVII
-
Part I: Introduction and Material
- 1. An insight into plant-based biodegradable composites 3
- 2. Corn (maize) – its fibers, polymers, composites, and applications: A review 13
-
Part II: Manufacturing and Properties
- 3. Production of biodegradable composites from agricultural waste: A review 39
- 4. Natural fiber-based biocomposites: Effect of orientation on mechanical properties 49
- 5. Mechanical properties of bamboo yarn: A biodegradable composite material for structural works 81
- 6. Aggrandized flexural properties of assorted natural biological materials 111
- 7. Hygrothermoelastic behaviour Natural fibers based composites: Mechanisms and formalism 141
-
Part III: Machining and Application
- 8. Influence of drilling parameters on the thrust force and mechanical properties of biodegradable particleboard composite panels: A review 167
- 9. A numerical study of rotating functionally graded annular fin 183
- Index 193