Startseite Technik Fractional heat conduction models and their applications
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fractional heat conduction models and their applications

  • Jan Terpak

Abstract

This contribution deals with fractional heat conduction models and their applications. A brief historical overview of the authors who have dealt with the heat conduction equation is given in the introduction. The one-dimensional heat conduction models using integer- and fractional-order derivatives are listed. Numerical methods of solution of the heat conduction models using integer- and fractional-order derivatives for homogeneous or inhomogeneous material and for homogeneous or inhomogeneous boundary conditions are described. In the case of numerical methods we deal with the finite-difference method using the Grünwald-Letnikov definition for the fractional time derivative. Implementation of these individual methods was realized in Matlab. A library of m-functions for the fractional heat conduction model has been created, namely the Time Fractional-Order Diffusion-Wave Equation Toolbox. The simulation examples using this toolbox are listed. At the end of the contribution applications are presented such as experimental verification of the methods for determining thermal diffusivity using the half-order derivative of the temperature by time.

Abstract

This contribution deals with fractional heat conduction models and their applications. A brief historical overview of the authors who have dealt with the heat conduction equation is given in the introduction. The one-dimensional heat conduction models using integer- and fractional-order derivatives are listed. Numerical methods of solution of the heat conduction models using integer- and fractional-order derivatives for homogeneous or inhomogeneous material and for homogeneous or inhomogeneous boundary conditions are described. In the case of numerical methods we deal with the finite-difference method using the Grünwald-Letnikov definition for the fractional time derivative. Implementation of these individual methods was realized in Matlab. A library of m-functions for the fractional heat conduction model has been created, namely the Time Fractional-Order Diffusion-Wave Equation Toolbox. The simulation examples using this toolbox are listed. At the end of the contribution applications are presented such as experimental verification of the methods for determining thermal diffusivity using the half-order derivative of the temperature by time.

Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/9783110571905-012/html
Button zum nach oben scrollen