Startseite Mathematik Maximum principle for the time-fractional PDEs
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Maximum principle for the time-fractional PDEs

  • Yuri Luchko und Masahiro Yamamoto
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This chapter is devoted to an in-depth discussion of the maximum principle for the time-fractional partial differential equations. Some of its applications including uniqueness of solutions to the initial-boundary-value problems for the time-fractional partial differential equations and their a priori norm estimates are discussed.

Abstract

This chapter is devoted to an in-depth discussion of the maximum principle for the time-fractional partial differential equations. Some of its applications including uniqueness of solutions to the initial-boundary-value problems for the time-fractional partial differential equations and their a priori norm estimates are discussed.

Kapitel in diesem Buch

  1. Frontmatter I
  2. Preface V
  3. Contents VII
  4. General theory of Caputo-type fractional differential equations 1
  5. Problems of Sturm–Liouville type for differential equations with fractional derivatives 21
  6. Maps with power-law memory: direct introduction and Eulerian numbers, fractional maps, and fractional difference maps 47
  7. Symmetries and group invariant solutions of fractional ordinary differential equations 65
  8. Operational method for fractional ordinary differential equations 91
  9. Lyapunov-type inequalities for fractional boundary value problems 119
  10. Fractional-parabolic equations and systems. Cauchy problem 145
  11. Time fractional diffusion equations: solution concepts, regularity, and long-time behavior 159
  12. Layer potentials for the time-fractional diffusion equation 181
  13. Fractional-hyperbolic equations and systems. Cauchy problem 197
  14. Equations with general fractional time derivatives–Cauchy problem 223
  15. User’s guide to the fractional Laplacian and the method of semigroups 235
  16. Parametrix methods for equations with fractional Laplacians 267
  17. Maximum principle for the time-fractional PDEs 299
  18. Wave equation involving fractional derivatives of real and complex fractional order 327
  19. Symmetries, conservation laws and group invariant solutions of fractional PDEs 353
  20. Fractional Duhamel principle 383
  21. Inverse problems of determining sources of the fractional partial differential equations 411
  22. Inverse problems of determining parameters of the fractional partial differential equations 431
  23. Inverse problems of determining coefficients of the fractional partial differential equations 443
  24. Abstract linear fractional evolution equations 465
  25. Abstract nonlinear fractional evolution equations 499
  26. Index 515
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110571660-014/html
Button zum nach oben scrollen