8. DEVELOPING VANADIUM AS AN ANTIDIABETIC OR ANTICANCER DRUG: A CLINICAL AND HISTORICAL PERSPECTIVE
-
Debbie C. Crans
, LaRee Henry , Gabriel Cardiff and Barry I. Posner
Abstract
Vanadium has been known for centuries to have beneficial effects on health and has the potential to be used as an alternative to other diabetic and anticancer medicines. The beneficial effects of vanadium salts or organic compounds have been explored in vitro, ex vivo, and in vivo in animal and human studies. A consensus among researchers is that increased bioavailability of these compounds could markedly increase the efficacy of this class of compounds. In addition, because many commercially available vanadium derivatives are being used by body builders to enhance performance, more understanding of their mode of action is desirable. Future studies of various vanadium compounds need to evaluate their biodistribution, biotransformation, and the effects of food and formulation on the bioavailability of the compounds. To date, most studies in humans have employed vanadium salts, mainly vanadyl sulfate, and dose-limiting side effects were reported at therapeutic doses. One organic vanadium compound, bis(ethylmaltolato)oxovanadium(IV), had improved efficacy compared to the vanadyl sulfate and was selected for Phase 1 and 2 clinical trials. Future studies should be conducted as randomized, placebo controlled trials lasting several months, with monitoring of both fasting blood glucose and hemoglobin A1c. Now, the most promising potential uses of vanadium compounds are as nutritional supplements to control glucose levels and perhaps, as an anticancer agent potentiated by immunotherapy.
Abstract
Vanadium has been known for centuries to have beneficial effects on health and has the potential to be used as an alternative to other diabetic and anticancer medicines. The beneficial effects of vanadium salts or organic compounds have been explored in vitro, ex vivo, and in vivo in animal and human studies. A consensus among researchers is that increased bioavailability of these compounds could markedly increase the efficacy of this class of compounds. In addition, because many commercially available vanadium derivatives are being used by body builders to enhance performance, more understanding of their mode of action is desirable. Future studies of various vanadium compounds need to evaluate their biodistribution, biotransformation, and the effects of food and formulation on the bioavailability of the compounds. To date, most studies in humans have employed vanadium salts, mainly vanadyl sulfate, and dose-limiting side effects were reported at therapeutic doses. One organic vanadium compound, bis(ethylmaltolato)oxovanadium(IV), had improved efficacy compared to the vanadyl sulfate and was selected for Phase 1 and 2 clinical trials. Future studies should be conducted as randomized, placebo controlled trials lasting several months, with monitoring of both fasting blood glucose and hemoglobin A1c. Now, the most promising potential uses of vanadium compounds are as nutritional supplements to control glucose levels and perhaps, as an anticancer agent potentiated by immunotherapy.
Chapters in this book
- Frontmatter i
- About the Editors v
- Historical Development and Perspectives of the Series vii
- Preface to Volume 19 ix
- Contents xiii
- Contributors to Volume 19 xix
- Titles of Volumes 1–44 in the Metal Ions in Biological Systems Series xxiii
- Contents of Volumes in the Metal Ions in Life Sciences Series xxv
- 1. METALS IN MEDICINE: THE THERAPEUTIC USE OF METAL IONS IN THE CLINIC 1
- 2. SMALL MOLECULES: THE PAST OR THE FUTURE IN DRUG INNOVATION? 17
- 3. IRON CHELATION FOR IRON OVERLOAD IN THALASSEMIA 49
- 4. IRONING OUT THE BRAIN 87
- 5. INFECTIONS ASSOCIATED WITH IRON ADMINISTRATION 123
- 6. IRON OXIDE NANOPARTICLE FORMULATIONS FOR SUPPLEMENTATION 157
- 7. BUILDING A TROJAN HORSE: SIDEROPHORE-DRUG CONJUGATES FOR THE TREATMENT OF INFECTIOUS DISEASES 181
- 8. DEVELOPING VANADIUM AS AN ANTIDIABETIC OR ANTICANCER DRUG: A CLINICAL AND HISTORICAL PERSPECTIVE 203
- 9. CHROMIUM SUPPLEMENTATION IN HUMAN HEALTH, METABOLIC SYNDROME, AND DIABETES 231
- 10. MANGANESE: ITS ROLE IN DISEASE AND HEALTH 253
- 11. COBALT-SCHIFF BASE COMPLEXES: PRECLINICAL RESEARCH AND POTENTIAL THERAPEUTIC USES 267
- 12. COPPER DEPLETION AS A THERAPEUTIC STRATEGY IN CANCER 303
- 13. METAL COMPOUNDS IN THE DEVELOPMENT OF ANTIPARASITIC AGENTS: RATIONAL DESIGN FROM BASIC CHEMISTRY TO THE CLINIC 331
- 14. CHEMICAL AND CLINICAL ASPECTS OF METAL-CONTAINING ANTIDOTES FOR POISONING BY CYANIDE 359
- SUBJECT INDEX 393
Chapters in this book
- Frontmatter i
- About the Editors v
- Historical Development and Perspectives of the Series vii
- Preface to Volume 19 ix
- Contents xiii
- Contributors to Volume 19 xix
- Titles of Volumes 1–44 in the Metal Ions in Biological Systems Series xxiii
- Contents of Volumes in the Metal Ions in Life Sciences Series xxv
- 1. METALS IN MEDICINE: THE THERAPEUTIC USE OF METAL IONS IN THE CLINIC 1
- 2. SMALL MOLECULES: THE PAST OR THE FUTURE IN DRUG INNOVATION? 17
- 3. IRON CHELATION FOR IRON OVERLOAD IN THALASSEMIA 49
- 4. IRONING OUT THE BRAIN 87
- 5. INFECTIONS ASSOCIATED WITH IRON ADMINISTRATION 123
- 6. IRON OXIDE NANOPARTICLE FORMULATIONS FOR SUPPLEMENTATION 157
- 7. BUILDING A TROJAN HORSE: SIDEROPHORE-DRUG CONJUGATES FOR THE TREATMENT OF INFECTIOUS DISEASES 181
- 8. DEVELOPING VANADIUM AS AN ANTIDIABETIC OR ANTICANCER DRUG: A CLINICAL AND HISTORICAL PERSPECTIVE 203
- 9. CHROMIUM SUPPLEMENTATION IN HUMAN HEALTH, METABOLIC SYNDROME, AND DIABETES 231
- 10. MANGANESE: ITS ROLE IN DISEASE AND HEALTH 253
- 11. COBALT-SCHIFF BASE COMPLEXES: PRECLINICAL RESEARCH AND POTENTIAL THERAPEUTIC USES 267
- 12. COPPER DEPLETION AS A THERAPEUTIC STRATEGY IN CANCER 303
- 13. METAL COMPOUNDS IN THE DEVELOPMENT OF ANTIPARASITIC AGENTS: RATIONAL DESIGN FROM BASIC CHEMISTRY TO THE CLINIC 331
- 14. CHEMICAL AND CLINICAL ASPECTS OF METAL-CONTAINING ANTIDOTES FOR POISONING BY CYANIDE 359
- SUBJECT INDEX 393