Startseite Mathematik Main embedding theorems for symmetric spaces of measurable functions
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Main embedding theorems for symmetric spaces of measurable functions

  • Mustafa A. Muratov und Ben-Zion A. Rubshtein
Veröffentlichen auch Sie bei De Gruyter Brill
© 2018 Walter de Gruyter GmbH, Berlin/Munich/Boston

© 2018 Walter de Gruyter GmbH, Berlin/Munich/Boston

Kapitel in diesem Buch

  1. Frontmatter I
  2. Contents VII
  3. Foreword IX
  4. Some results on spectral properties of unital algebras and on the algebra of linear operators on a unital algebra 1
  5. Descriptions of all closed maximal one-sided ideals in topological algebras 19
  6. On non self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces 29
  7. Functional calculus on algebras of operators generated by a self-adjoint operator in Pontryagin space Π1 55
  8. On Gelfand-Naimark type Theorems for unital abelian complex and real locally C*-, and locally JB-algebras 73
  9. Multipliers and strictly real topological algebras 109
  10. Multipliers in some perfect locally m-pseudo-convex algebras 123
  11. Wedderburn structure theorems for two-sided locally m-convex H-algebras 133
  12. Homologically best modules in classical and quantized functional analysis 151
  13. Operator Grüss inequality 165
  14. Main embedding theorems for symmetric spaces of measurable functions 175
  15. Mapping class groups are linear 193
  16. Subnormable A-convex algebra 201
  17. Commutative BP∗-algebras and Gelfand-Naimark’s theorem 213
  18. Discrete nonclosed subsets in maximally nondiscrete topological groups 221
  19. Faithfully representable topological *-algebras: some spectral properties 233
  20. On continuity of complementors in topological algebras 251
  21. Dominated ergodic theorem for isometries of non-commutative Lp-spaces, 1 < p < ∞ , p ≠ 2 261
  22. Ranks and the approximate n-th root property of C∗-algebras 275
  23. Dense ideals in topological algebras: some results and open problems 295
Heruntergeladen am 18.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110413557-011/html
Button zum nach oben scrollen