Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Chapter 9: Generative AI and Large Language Models
-
Paul Boudreau
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Frontmatter i
- Contents v
- Preface xi
- Acknowledgments xv
- About the Author xvii
-
Part I: Fundamental Concepts of AI in Project Management
- Chapter 1: Why Project Management Needs AI 1
- Chapter 2: Two AI Components for Projects 11
- Chapter 3: The Business Case for AI 21
- Chapter 4: Automating Project Management Tasks 27
-
Part II: The Importance of Data
- Chapter 5: Providing Good Project Data 33
- Chapter 6: Acquiring and Using Data 45
-
Part III: AI Solutions for Project Problems
- Chapter 7: Predicting Project Results Using Machine Learning Algorithms and Supervised Learning to Predict Results 57
- Chapter 8: Improving Project Productivity with NLP 89
- Chapter 9: Generative AI and Large Language Models 111
- Chapter 10: Genetic Algorithms for Project Navigation 119
-
Part IV: Applying AI to Project Processes
- Chapter 11: Project Initiation, Planning, Delivery, and Close 127
- Chapter 12: Project Control and Project Termination 139
- Chapter 13: AI for Agile Process Effectiveness 145
- Chapter 14: Applying AI to Resolve Project Failure 149
-
Part V: Acquiring AI Solutions
- Chapter 15: The Build or Buy Decision 157
- Chapter 16: Evaluating and Acquiring AI Software 165
- Chapter 17: Implementing AI Solutions 173
-
Part VI: Adapting to AI in Project Management
- Chapter 18: Changes to Roles of the Project Manager, PMO, and Project Team 181
- Chapter 19: Ethical Implications of AI in Project Management 195
- Chapter 20: The Rapid Advance of AI Technology 205
- Chapter 21: Conclusion 211
- Appendix: Terms and Definitions 213
- Index 217
Kapitel in diesem Buch
- Frontmatter i
- Contents v
- Preface xi
- Acknowledgments xv
- About the Author xvii
-
Part I: Fundamental Concepts of AI in Project Management
- Chapter 1: Why Project Management Needs AI 1
- Chapter 2: Two AI Components for Projects 11
- Chapter 3: The Business Case for AI 21
- Chapter 4: Automating Project Management Tasks 27
-
Part II: The Importance of Data
- Chapter 5: Providing Good Project Data 33
- Chapter 6: Acquiring and Using Data 45
-
Part III: AI Solutions for Project Problems
- Chapter 7: Predicting Project Results Using Machine Learning Algorithms and Supervised Learning to Predict Results 57
- Chapter 8: Improving Project Productivity with NLP 89
- Chapter 9: Generative AI and Large Language Models 111
- Chapter 10: Genetic Algorithms for Project Navigation 119
-
Part IV: Applying AI to Project Processes
- Chapter 11: Project Initiation, Planning, Delivery, and Close 127
- Chapter 12: Project Control and Project Termination 139
- Chapter 13: AI for Agile Process Effectiveness 145
- Chapter 14: Applying AI to Resolve Project Failure 149
-
Part V: Acquiring AI Solutions
- Chapter 15: The Build or Buy Decision 157
- Chapter 16: Evaluating and Acquiring AI Software 165
- Chapter 17: Implementing AI Solutions 173
-
Part VI: Adapting to AI in Project Management
- Chapter 18: Changes to Roles of the Project Manager, PMO, and Project Team 181
- Chapter 19: Ethical Implications of AI in Project Management 195
- Chapter 20: The Rapid Advance of AI Technology 205
- Chapter 21: Conclusion 211
- Appendix: Terms and Definitions 213
- Index 217