Startseite Standard basis of a polynomial ideal over commutative Artinian chain ring
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Standard basis of a polynomial ideal over commutative Artinian chain ring

  • E.V. Gorbatov
Veröffentlicht/Copyright: 1. Januar 2004
Veröffentlichen auch Sie bei De Gruyter Brill
Discrete Mathematics and Applications
Aus der Zeitschrift Band 14 Heft 1

We construct a standard basis of an ideal of the polynomial ring R[X] = R[x1, . . . , xk] over commutative Artinian chain ring R, which generalises a Gröbner base of a polynomial ideal over fields. We adopt the notion of the leading term of a polynomial suggested by D. A. Mikhailov and A. A. Nechaev, but using the simplification schemes introduced by V. N. Latyshev. We prove that any canonical generating system constructed by D. A. Mikhailov and A. A. Nechaev is a standard basis of the special form. We give an algorithm (based on the notion of S-polynomial) which constructs standard bases and canonical generating systems of an ideal. We define minimal and reduced standard bases and give their characterisations. We prove that a Gröbner base χ of a polynomial ideal over the field = R/ rad(R) can be lifted to a standard basis of the same cardinality over R with respect to the natural epimorphism ν : R[X] → [X] if and only if there is an ideal IR[X] such that I is a free R-module and Ī = (χ).

Published Online: 2004-01-01
Published in Print: 2004-01-01

Copyright 2004, Walter de Gruyter

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/156939204774148820/pdf?lang=de
Button zum nach oben scrollen