Boundaries of random triangulation of a disk
-
M. A. Krikun
We consider random triangulations of a disk with k holes and N triangles as N → ∞. The coefficient λ m, λ > 0, is assigned to a triangulation with the total number of boundary edges equal to m. In the case of two boundaries, we separate three domains of variation of the parameter λ, and in each of them find the limit joint distribution of boundary lengths. For a greater number of boundaries, we give an algorithm to calculate the generating functions for the number of multi-rooted triangulations depending of the number of triangles and the lengths of boundaries. In Appendix, we discuss the relation between multi-rooted triangulations and unrooted triangulations, and give analogues of limit distributions for unrooted triangulations.
Copyright 2004, Walter de Gruyter
Artikel in diesem Heft
- On the number of closure-type mappings
- Spectral properties of a linear congruent generator in special cases
- On the key space of the McEliece cryptosystem based on binary Reed–Muller codes
- On the complexity of polarised polynomials of multi-valued logic functions in one variable
- Simulation of circuits of functional elements by the universal Turing machine
- Implementation of Markov chains over Galois fields
- On solving automaton equations
- Boundaries of random triangulation of a disk
- On the accuracy of approximation in the Poisson limit theorem
Artikel in diesem Heft
- On the number of closure-type mappings
- Spectral properties of a linear congruent generator in special cases
- On the key space of the McEliece cryptosystem based on binary Reed–Muller codes
- On the complexity of polarised polynomials of multi-valued logic functions in one variable
- Simulation of circuits of functional elements by the universal Turing machine
- Implementation of Markov chains over Galois fields
- On solving automaton equations
- Boundaries of random triangulation of a disk
- On the accuracy of approximation in the Poisson limit theorem