Article
Licensed
Unlicensed
Requires Authentication
On the complexity of polarised polynomials of multi-valued logic functions in one variable
-
S. N. Selezneva
Published/Copyright:
July 1, 2004
We consider multi-valued logic functions represented by polarised polynomials. A polynomial is called polarised if each its variable can be polarised by a certain shift. We introduce the Shannon function which characterises the complexity of representations of multi-valued logic functions by polarised polynomials and obtain an exact estimate of the Shannon function for functions in one variable.
Published Online: 2004-07-01
Published in Print: 2004-07-01
Copyright 2004, Walter de Gruyter
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- On the number of closure-type mappings
- Spectral properties of a linear congruent generator in special cases
- On the key space of the McEliece cryptosystem based on binary Reed–Muller codes
- On the complexity of polarised polynomials of multi-valued logic functions in one variable
- Simulation of circuits of functional elements by the universal Turing machine
- Implementation of Markov chains over Galois fields
- On solving automaton equations
- Boundaries of random triangulation of a disk
- On the accuracy of approximation in the Poisson limit theorem
Articles in the same Issue
- On the number of closure-type mappings
- Spectral properties of a linear congruent generator in special cases
- On the key space of the McEliece cryptosystem based on binary Reed–Muller codes
- On the complexity of polarised polynomials of multi-valued logic functions in one variable
- Simulation of circuits of functional elements by the universal Turing machine
- Implementation of Markov chains over Galois fields
- On solving automaton equations
- Boundaries of random triangulation of a disk
- On the accuracy of approximation in the Poisson limit theorem