Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
-
Jasmina Bogojeska
und Thomas Lengauer
HIV patients are treated by administration of combinations of antiretroviral drugs. The very large number of such combinations makes the manual search for an effective therapy practically impossible, especially in advanced stages of the disease. Therapy selection can be supported by statistical methods that predict the outcomes of candidate therapies. However, these methods are based on clinical data sets that have highly unbalanced therapy representation.This paper presents a novel approach that considers each drug belonging to a target combination therapy as a separate task in a multi-task hierarchical Bayes setting. The drug-specific models take into account information on all therapies containing the drug, not just the target therapy. In this way, we can circumvent the problem of data sparseness pertaining to some target therapies.The computational validation shows that compared to the most commonly used approach that provides therapy information in the form of input features, our model has significantly higher predictive power for therapies with very few training samples and is at least as powerful for abundant therapies.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Artikel in diesem Heft
- Article
- Exploring Multicollinearity Using a Random Matrix Theory Approach
- The Beta-Binomial SGoF method for multiple dependent tests
- Detecting Sample Misidentifications in Genetic Association Studies
- Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
- Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
- The practical effect of batch on genomic prediction
- Normalization, bias correction, and peak calling for ChIP-seq
- Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model
- Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals
- Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set
- Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes
- Graph Selection with GGMselect
- Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry
- A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
- Software Communication
- GENOVA: Gene Overlap Analysis of GWAS Results
Artikel in diesem Heft
- Article
- Exploring Multicollinearity Using a Random Matrix Theory Approach
- The Beta-Binomial SGoF method for multiple dependent tests
- Detecting Sample Misidentifications in Genetic Association Studies
- Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
- Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
- The practical effect of batch on genomic prediction
- Normalization, bias correction, and peak calling for ChIP-seq
- Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model
- Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals
- Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set
- Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes
- Graph Selection with GGMselect
- Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry
- A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
- Software Communication
- GENOVA: Gene Overlap Analysis of GWAS Results