Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
-
Tieming Ji
Statistical inference for microarray experiments usually involves the estimation of error variance for each gene. Because the sample size available for each gene is often low, the usual unbiased estimator of the error variance can be unreliable. Shrinkage methods, including empirical Bayes approaches that borrow information across genes to produce more stable estimates, have been developed in recent years. Because the same microarray platform is often used for at least several experiments to study similar biological systems, there is an opportunity to improve variance estimation further by borrowing information not only across genes but also across experiments. We propose a lognormal model for error variances that involves random gene effects and random experiment effects. Based on the model, we develop an empirical Bayes estimator of the error variance for each combination of gene and experiment and call this estimator BAGE because information is Borrowed Across Genes and Experiments. A permutation strategy is used to make inference about the differential expression status of each gene. Simulation studies with data generated from different probability models and real microarray data show that our method outperforms existing approaches.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Exploring Multicollinearity Using a Random Matrix Theory Approach
- The Beta-Binomial SGoF method for multiple dependent tests
- Detecting Sample Misidentifications in Genetic Association Studies
- Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
- Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
- The practical effect of batch on genomic prediction
- Normalization, bias correction, and peak calling for ChIP-seq
- Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model
- Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals
- Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set
- Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes
- Graph Selection with GGMselect
- Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry
- A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
- Software Communication
- GENOVA: Gene Overlap Analysis of GWAS Results
Articles in the same Issue
- Article
- Exploring Multicollinearity Using a Random Matrix Theory Approach
- The Beta-Binomial SGoF method for multiple dependent tests
- Detecting Sample Misidentifications in Genetic Association Studies
- Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
- Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
- The practical effect of batch on genomic prediction
- Normalization, bias correction, and peak calling for ChIP-seq
- Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model
- Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals
- Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set
- Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes
- Graph Selection with GGMselect
- Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry
- A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
- Software Communication
- GENOVA: Gene Overlap Analysis of GWAS Results