A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
-
John P. Ferguson
, Judy H. Cho und Hongyu Zhao
Most approaches for analyzing ChIP-Seq data are focused on inferring exact protein binding sites from a single library. However, frequently multiple ChIP-Seq libraries derived from differing cell lines or tissue types from the same individual may be available. In such a situation, a separate analysis for each tissue or cell line may be inefficient. Here, we describe a novel method to analyze such data that intelligently uses the joint information from multiple related ChIP-Seq libraries. We present our method as a two-stage procedure. First, separate single cell line analysis is performed for each cell line. Here, we use a novel mixture regression approach to infer the subset of genes that are most likely to be involved in protein binding in each cell line. In the second step, we combine the separate single cell line analyses using an Empirical Bayes algorithm that implicitly incorporates inter-cell line correlation. We demonstrate the usefulness of our method using both simulated data, as well as real H3K4me3 and H3K27me3 histone methylation libraries.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Artikel in diesem Heft
- Article
- Exploring Multicollinearity Using a Random Matrix Theory Approach
- The Beta-Binomial SGoF method for multiple dependent tests
- Detecting Sample Misidentifications in Genetic Association Studies
- Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
- Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
- The practical effect of batch on genomic prediction
- Normalization, bias correction, and peak calling for ChIP-seq
- Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model
- Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals
- Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set
- Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes
- Graph Selection with GGMselect
- Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry
- A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
- Software Communication
- GENOVA: Gene Overlap Analysis of GWAS Results
Artikel in diesem Heft
- Article
- Exploring Multicollinearity Using a Random Matrix Theory Approach
- The Beta-Binomial SGoF method for multiple dependent tests
- Detecting Sample Misidentifications in Genetic Association Studies
- Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis
- Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies
- The practical effect of batch on genomic prediction
- Normalization, bias correction, and peak calling for ChIP-seq
- Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model
- Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals
- Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set
- Non-Iterative, Regression-Based Estimation of Haplotype Associations with Censored Survival Outcomes
- Graph Selection with GGMselect
- Sample Size Calculations for Designing Clinical Proteomic Profiling Studies Using Mass Spectrometry
- A New Approach for the Joint Analysis of Multiple Chip-Seq Libraries with Application to Histone Modification
- Software Communication
- GENOVA: Gene Overlap Analysis of GWAS Results