Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
-
Mark F. Zaranyika
Abstract
A simplified rate model is presented showing that when analytes are determined by atomic spectroscopy first in the absence, and then in the presence, of easily ionizable elements (EIEs) as interferents, the change in collisional radiative recombination activation energy, ∆Ea, is zero when the system conforms to local thermal equilibrium (LTE). ∆Ea values of –7.462, –7.925, and –8.898 eV were obtained when Ca(II), Mg(II), and Sr(II), respectively, were determined by inductively coupled plasma-atomic emission spectrometry (ICP‑AES) in the absence and presence of excess Li, while ∆Ea values of –6.477 and –7.481 eV were obtained when Mg(II) and Sr(II), respectively, were determined in the absence and presence of excess K as interferent. A value of –2.223 eV for ∆Ea was obtained when Mg(I) was determined by air-acetylene flame atomic emission spectrometry (FAES) in the absence and presence of excess K. The data confirm that all the systems studied were not in LTE, and suggest pre-LTE collisional radiative recombination in the absence of the interferent in all cases, and that collisional radiative recombination involving electrons from the interferent can occur from the ambipolar diffusion state or the LTE state. Possible causes for departure from LTE, and a possible collisional radiative recombination mechanism to account for the ∆Ea values obtained, are discussed.
M. W. Blades, G. Horlick. Spectrochim. Acta, Part B36, 881 (1981). (http://dx.doi.org/10.1016/0584-8547(81)80080-8)Search in Google Scholar
R. Herman, C. T. J. Alkemade. In Chemical Analysis by Flame Photometry, pp. 312–318, Wiley-Interscience, New York (1973).Search in Google Scholar
J. Smit, C. T. J. Alkemade, J. C. M. Verschure. Biochim. Biophys. Acta6, 508 (1951). (http://dx.doi.org/10.1016/0006-3002(50)90128-4)Search in Google Scholar PubMed
D. S. Hanselman, N. N. Sesi, M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B49, 495 (1994). (http://dx.doi.org/10.1016/0584-8547(94)80042-1)Search in Google Scholar
N. N. Sesi, G. M. Hieftje. Spectrochim. Acta, Part B51, 1601 (1996). (http://dx.doi.org/10.1016/S0584-8547(96)01560-1)Search in Google Scholar
B. L. Caughlin, M. W. Blades. Spectrochim. Acta, Part B40, 987 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80068-9)Search in Google Scholar
D. Sun, Z. Zhang, H. Qian, M. Cai. Spectrochim. Acta, Part B43, 391 (1988).Search in Google Scholar
M. R. Tripkovic, I. D. Holclajtner-Antunovic. J. Anal. Atom. Spectrosc.8, 349 (1993). (http://dx.doi.org/10.1039/ja9930800349)Search in Google Scholar
I. D. Holclajtner-Antunovic, M. R. Tripkovic. J. Anal. Atom. Spectrosc.8, 359 (1993). (http://dx.doi.org/10.1039/ja9930800359)Search in Google Scholar
P. J. Galley, M. Glick, G. M. Hieftje. Spectrochim. Acta, Part B48, 769 (1993). (http://dx.doi.org/10.1016/0584-8547(93)80084-8)Search in Google Scholar
A. C. Lazar, P. B. Farnsworth. Appl. Spectrosc.53, 457 (1999). (http://dx.doi.org/10.1366/0003702991946749)Search in Google Scholar
M. Thompson, M. H. Ramsey. Analyst110, 1413 (1985). (http://dx.doi.org/10.1039/an9851001413)Search in Google Scholar
J. M. Mermet. J. Anal. Atom. Spectrom.13, 419 (1998). (http://dx.doi.org/10.1039/a707197c)Search in Google Scholar
G. C-Y. Chan, W.-T. Chan. Spectrochim. Acta, Part B58, 1301 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00055-7)Search in Google Scholar
S. A. Lehn, K. A. Warner, M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B58, 1785 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00159-9)Search in Google Scholar
R. M. Barnes. Trends Anal. Chem.1, 51 (1981). (http://dx.doi.org/10.1016/0165-9936(91)80011-G)Search in Google Scholar
A. Al-Ammar, R. M. Barnes. Spectrochim. Acta, Part B54, 1063 (1999). (http://dx.doi.org/10.1016/S0584-8547(99)00046-4)Search in Google Scholar
J. L. Todoli, L. Gras, V. Hermandis, J. Mora. J. Anal. Atom. Spectrom.17, 142 (2002). (http://dx.doi.org/10.1039/b009570m)Search in Google Scholar
G. C-Y. Chan, G. M. Hieftje. Spectrochim Acta, Part B61, 642 (2006). (http://dx.doi.org/10.1016/j.sab.2005.09.007)Search in Google Scholar
G. C-Y. Chan, G. M. Hieftje. Spectrochim Acta, Part B59, 163 (2004). (http://dx.doi.org/10.1016/j.sab.2003.10.004)Search in Google Scholar
J. de Boer, M. Velterop. Fresenius’ J. Anal. Chem.356, 362 (1996). (http://dx.doi.org/10.1007/s0021663560362)Search in Google Scholar PubMed
M. W. Blades, B. I. Caughlin, Z. H. Walker, L. L. Burton. Prog. Analyst Spectrosc.10, 57 (1987).Search in Google Scholar
G. M. Hieftje. Spectrochim Acta, Part B47, 3 (1992). (http://dx.doi.org/10.1016/0584-8547(92)80003-Y)Search in Google Scholar
G. M. Hieftje, M. Huang, S. A. Lehn, K. Warner, G. Gamez, S. Ray, A. Leach. Anal. Sci., Rev.18, 1185 (2002). (http://dx.doi.org/10.2116/analsci.18.1185)Search in Google Scholar PubMed
M. Huang, P. Y. Yang, D. S. Hanselman, C. A. Monnig, G. M. Hieftje. Spectrochim. Acta, Part B45511 (1990). (http://dx.doi.org/10.1016/0584-8547(90)80126-4)Search in Google Scholar
K. A. Marshall, G. M. Hieftje. Spectrochim. Acta, Part B43, 841 (1988). (http://dx.doi.org/10.1016/0584-8547(88)80117-4)Search in Google Scholar
M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B40, 1387 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80163-4)Search in Google Scholar
K. A. Marshall, G. M. Hieftje. Spectrochim. Acta, Part B43, 851 (1988). (http://dx.doi.org/10.1016/0584-8547(88)80118-6)Search in Google Scholar
M. Huang, K. A. Marshall, G. M. Hieftje. Anal. Chem.58, 207 (1986). (http://dx.doi.org/10.1021/ac00292a050)Search in Google Scholar
M. Huang, G. M. Hieftje. Spectrochim. Acta, Part B44, 291 (1989). (http://dx.doi.org/10.1016/0584-8547(89)80033-3)Search in Google Scholar
C. A. Monnig, K. A. Marshall, G. D. Rayson, G. M. Hieftje. Spectrochim. Acta, Part B43, 1217 (1988). (http://dx.doi.org/10.1016/0584-8547(88)80165-4)Search in Google Scholar
C. A. Monnig, B. D. Gebhart, K. A. Marshall, G. M. Hieftje. Spectrochim. Acta, Part B45, 261 (1990). (http://dx.doi.org/10.1016/0584-8547(90)80102-O)Search in Google Scholar
N. N. Sesi, D. S. Hanselman, P. Galley, J. Horner, M Huang, G. M. Hieftje. Spectrochim. Acta, Part B52, 83 (1997). (http://dx.doi.org/10.1016/S0584-8547(96)01562-5)Search in Google Scholar
S. A. Lehn, G. M. Hieftje. Spectrochim. Acta, Part B58, 1821 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00164-2)Search in Google Scholar
S. A. Lehn, K. A. Warner, M. Huang, G. M. Hieftje. Spectrochim Acta, Part B58, 1785 (2003). (http://dx.doi.org/10.1016/S0584-8547(03)00159-9)Search in Google Scholar
A. F. Parisi, G. D. Rayson, G. M. Hieftje. Spectrochim. Acta, Part B42, 361 (1987). (http://dx.doi.org/10.1016/0584-8547(87)80077-0)Search in Google Scholar
P. W. J. M. Boumans. Theory of Spectrochemical Excitations, Hilger and Watts, London (1966).Search in Google Scholar
J. Vicek, V. Pelikan. Spectrochim Acta, Part B47, 681 (1992).Search in Google Scholar
N. Furuta, G. Horlick. Spectrochim. Acta, Part B37, 53 (1982). (http://dx.doi.org/10.1016/0584-8547(82)80008-6)Search in Google Scholar
J. M. de Regt, F. P. J. de Groote, J. A. M. van der Mullen, D. C. Schram. Spectrochim. Acta, Part B51, 1371 (1996). (http://dx.doi.org/10.1016/0584-8547(96)01491-7)Search in Google Scholar
T. Fujimoto. J. Phys. Soc. Jpn.47, 265 (1979). (http://dx.doi.org/10.1143/JPSJ.47.265)Search in Google Scholar
T. Fujimoto. J. Phys. Soc. Jpn.47, 273 (1979). (http://dx.doi.org/10.1143/JPSJ.47.273)Search in Google Scholar
T. Fujimoto. J. Phys. Soc. Jpn.49, 1561 (1980). (http://dx.doi.org/10.1143/JPSJ.49.1561)Search in Google Scholar
T. Fujimoto. J. Phys. Soc. Jpn.49, 1569 (1980). (http://dx.doi.org/10.1143/JPSJ.49.1569)Search in Google Scholar
D. R. Bates, A. E. Kingston, R. W. P. Mcwhiter. Proc. Roy. Soc. (London) A267, 297 (1962). (http://dx.doi.org/10.1098/rspa.1962.0101)Search in Google Scholar
D. R. Bates, A. E. Kingston. Planet. Space Sci.11, 1 (1963). (http://dx.doi.org/10.1016/0032-0633(63)90199-5)Search in Google Scholar
R. W. P. McWhirter, A. G. Hearn. Proc. Phys. Soc.82, 641 (1963). (http://dx.doi.org/10.1088/0370-1328/82/5/301)Search in Google Scholar
R. W. P. McWhirter. In Spectral Intensities, Plasma Diagnostic Techniques, R. H. Huddlestone, S. L. Leornard (Eds.), Chap. 5, pp. 201–264, Academic Press, New York (1965).Search in Google Scholar
R. J. Lovett. Spectrochim. Acta, Part B37, 969 (1982). (http://dx.doi.org/10.1016/0584-8547(82)80115-8)Search in Google Scholar
T. Hasegawa, H. Haraguchi. Spectrochim. Acta, Part B40, 1505 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80174-9)Search in Google Scholar
G. M. Hieftje, G. D. Rayson, J. W. Olesik. Spectrochim. Acta, Part B40, 167 (1985). (http://dx.doi.org/10.1016/0584-8547(85)80020-3)Search in Google Scholar
G. D. Rayson, G. M. Hieftje. Spectrochim. Acta, Part B41, 683 (1986). (http://dx.doi.org/10.1016/0584-8547(86)80084-2)Search in Google Scholar
M. Wu, G. M. Hieftje. Spectrochim. Acta, Part B49, 149 (1994). (http://dx.doi.org/10.1016/0584-8547(94)80014-6)Search in Google Scholar
G. C-Y. Chan, G. M. Hieftje. Spectrochim. Acta, Part B59, 163 (2004). (http://dx.doi.org/10.1016/j.sab.2003.10.004)Search in Google Scholar
M. F. Zaranyika, A. Chirenje. Fresenius’ J. Anal. Chem.368, 45 (2000). (http://dx.doi.org/10.1007/s002160000517)Search in Google Scholar PubMed
M. F. Zaranyika, C. Mahamadi. Spectrosc. Lett.40, 835 (2007). (http://dx.doi.org/10.1080/00387010701436455)Search in Google Scholar
M. F. Zaranyika, A. T. Chirenje, C. Mahamadi. Spectrosc. Lett.45, 1 (2012). (http://dx.doi.org/10.1080/00387010.2011.579679)Search in Google Scholar
Spectroflame Modula 90/95 System Operating Manual, Issue (90/95), Spectro Analytical Instruments, GmbH, Germany.Search in Google Scholar
M. W. Blades. Excitation Mechanisms and Discharge Characteristics: Recent Developments in Inductively Coupled Plasma Emission Spectrometry. Part 2. Applications and Fundamentals, P. W. J. M. Boumanns (Ed.), p. 387, Wiley-Interscience, New York (1987).Search in Google Scholar
S. L. Leonard. J. Quantit. Spectrosc. Radiation Transfer12, 619 (1972). (http://dx.doi.org/10.1016/0022-4073(72)90171-9)Search in Google Scholar
P. Serapinas, J. Salkauskas, Z. Ezerniskis, A. Acus. Spectrochim. Acta, Part B65, 15 (2010). (http://dx.doi.org/10.1016/j.sab.2009.10.008)Search in Google Scholar
A. A. Pupyshev, E. V. Semenova. Spectrochim. Acta, Part B56, 2397 (2001). (http://dx.doi.org/10.1016/S0584-8547(01)00301-9)Search in Google Scholar
C. W. Allen. Astrophysical Quantities, Athrone Press, London (1955).Search in Google Scholar
H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Dean Jr. Instrumental Methods of Analysis, 7th ed., p. 232, Wadsworth, London (1988).Search in Google Scholar
D. R. Lide (Ed.). Handbook of Chemistry and Physics, 73rd ed., pp. 10–211, CRC Press, London (1992–1993).Search in Google Scholar
A. M. Howatson. An Introduction to Gas Discharges, 2nd ed., p. 27, Pergamon Press, Oxford (1976).Search in Google Scholar
A. M. Howatson. An Introduction to Gas Discharges, 2nd ed., p. 42, Pergamon Press, Oxford (1976).Search in Google Scholar
N. Taylor, R. L. Spencer, P. B. Farnworth. J. Anal. Atom. Spectrom.27, 857 (2012). (http://dx.doi.org/10.1039/c2ja10320f)Search in Google Scholar
F. Aeschbach. Spectrochim. Acta, Part B37, 987 (1982). (http://dx.doi.org/10.1016/0584-8547(82)80116-X)Search in Google Scholar
© 2013 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)
Articles in the same Issue
- Preface
- Polymeric sorbents for removal of Cr(VI) from environmental samples
- Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies
- Source apportionment of polycyclic aromatic hydrocarbons in sediments from polluted rivers
- Near-infrared spectroscopy and chemometrics for rapid profiling of plant secondary metabolites
- Adsorption of radiocesium from aqueous solution using chemically modified pine cone powder
- Sustainable analytical chemistry—more than just being green
- Departure from local thermal equilibrium during ICP-AES and FAES: Characterization in terms of collisional radiative recombination activation energy
- Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems (IUPAC Technical Report)