Home Mathematics 19.9 Boston Pricing by Single-index Quantile Regression
Chapter
Licensed
Unlicensed Requires Authentication

19.9 Boston Pricing by Single-index Quantile Regression

  • Maozai TIAN
View more publications by EDP Sciences
Hierarchical Quantile Modeling
This chapter is in the book Hierarchical Quantile Modeling
© 2024 EDP Sciences, Les Ulis

© 2024 EDP Sciences, Les Ulis

Chapters in this book

  1. Frontmatter i
  2. Preface iii
  3. Contents vii
  4. Part I QUANTILE REGRESSION MODELLING
  5. Chapter 1 LINEAR QUANTILE REGRESSION
  6. 1.1 Education: Mathematical Achievements 3
  7. 1.2 Large Sample Properties 16
  8. 1.3 Bibliographic Notes 19
  9. Chapter 2 NONPARAMETRIC QUANTILE REGRESSION
  10. 2.1 Robust Local Approximation Method 20
  11. 2.2 Nonparametric Function Estimation 40
  12. 2.3 Local Linear Quantile Regression 55
  13. Chapter 3 ADAPTIVE QUANTILE REGRESSION
  14. 3.1 Locally Constant Adaptive Quantile Regression 69
  15. 3.2 Locally Linear Adaptive Quantile Regression 82
  16. Chapter 4 ADAPTIVE QUANTILES REGRESSION
  17. 4.1 Additive Conditional Quantiles with High-Dimensional Covariates 91
  18. 4.2 Nonparametric Estimation 105
  19. Chapter 5 QUANTILE REGRESSION BASED ON VARYING-COEFFICIENT MODELS
  20. 5.1 Adaptive Quantile Regression Based on Varying-coefficient Models 127
  21. 5.2 Varying-coefficient Models with Heteroscedasticity 143
  22. Chapter 6 SINGLE-INDEX QUANTILE REGRESSION
  23. 6.1 Single Index Models 163
  24. 6.2 CQR for Varying Coefficient Single-index Models 179
  25. Chapter 7 QUANTILE AUTOREGRESSION
  26. 7.1 Introduction 196
  27. 7.2 The Model 197
  28. 7.3 Estimation 203
  29. 7.4 Quantitle Monotonicity 208
  30. 7.5 Inference 209
  31. Chapter 8 COMPOSITE QUANTILE REGRESSION
  32. 8.1 Composite Quantile and Model Selection 213
  33. 8.2 Local Quantile Regression 229
  34. Chapter 9 HIGH DIMENSIONAL QUANTILE REGRESSION
  35. 9.1 Diagnostic for Ultra High Heterogeneity 248
  36. 9.2 Bayesian Quantile Regression 264
  37. Part II HIERARCHICAL MODELING
  38. Chapter 10 HIERARCHICAL LINEAR MODELS
  39. 10.1 Bayes Estimates 273
  40. 10.2 Maximum Likelihood from Incomplete Data 283
  41. 10.3 EM-algorithm 296
  42. 10.4 Iterative Generalized Least Squares 310
  43. 10.5 Scoring Algorithm 324
  44. 10.6 Newton-Raphson Algorithm 337
  45. Chapter 11 HIERARCHICAL GENERALIZED LINEAR MODELS
  46. 11.1 Hierarchical Likelihood 354
  47. 11.2 A Gibbs Sampling Approach 383
  48. Chapter 12 HIERARCHICAL NONLINEAR MODELS
  49. 12.1 Conditional Second-Order Generalized Estimating Equations 394
  50. 12.2 A Hybrid Estimator 407
  51. Chapter 13 HIERARCHICAL SEMIPARAMETRIC MODELS
  52. 13.1 Hierarchical Semiparametric Nonlinear Mixed-Effects Models 429
  53. 13.2 Simultaneously Modeling for Mean-Covariance 444
  54. Chapter 14 HIERARCHICAL SPLINE MODELS
  55. 14.1 Introduction 463
  56. 14.2 Nonparametric Estimation 465
  57. 14.3 WALD Tests for Regression Quantile Models 467
  58. 14.4 Conclusions 470
  59. 14.5 Bibliographic Notes 470
  60. Chapter 15 HIERARCHIAL LINEAR QUANTILE MODELING
  61. 15.1 Introduction 473
  62. 15.2 The Hierarchical Quantile Regression Model 474
  63. 15.3 EQ Algorithm 475
  64. 15.4 Asymptotic Properties 477
  65. 15.5 Bibliographic Notes 483
  66. Chapter 16 HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING 16.1 Introduction
  67. 16.1 Introduction 485
  68. 16.2 The Models and Estimation 487
  69. 16.3 Asymptotic Results 492
  70. 16.4 Conclusion 499
  71. 16.5 Bibliographic Notes 499
  72. Chapter 17 COMPOSITE HIERARCHICAL LINEAR QUANTILE MODELING
  73. 17.1 Introduction 501
  74. 17.2 The Models 502
  75. 17.3 Estimation 504
  76. 17.4 Asymptotic Properties 506
  77. 17.5 Discussion 511
  78. 17.6 Bibliographic Notes 511
  79. Chapter 18 COMPOSITE HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING
  80. 18.1 Introduction 513
  81. 18.2 The Models 515
  82. 18.3 Estimation and Algorithm 516
  83. 18.4 Asymptotic Properties 517
  84. 18.5 Discussion 522
  85. 18.6 Bibliographic Notes 523
  86. Part IV LARGE SCALE APPLICATIONS TO REAL DATA
  87. Chapter 19 APPLICATIONS OF QUANTILE REGRESSION 527
  88. 19.1 Introduction 527
  89. 19.2 Applications to Mathematical Education Based on LQR 540
  90. 19.3 Application of Local LQR 556
  91. 19.4 The Widening Gap between the Rich and the Poor 560
  92. 19.5 Boston Housing Analysis Using AQR 561
  93. 19.6 The Analysis of Japanese Firms in the Chemical Industry by Employing AQR 565
  94. 19.7 The Analysis of Norwegian Air Pollution Bying Quantile Varying-coefficient Regression 568
  95. 19.8 Empirical Application to Air Pollution Based HVCMs 570
  96. 19.9 Boston Pricing by Single-index Quantile Regression 571
  97. 19.10 Boston Pricing Using VCSIM 575
  98. 19.11 Two Economic Time Series Basedbon the Quantile Autoregression 576
  99. 19.12 The UK Family Expenditure Using Local CQR Methodology 579
  100. 19.13 Analysis of Microarray Dataset 581
  101. 19.14 Analysis of Two Data Sets Through Bayesian Quantile Autoregression 585
  102. Chapter 20 APPLICATIONS OF HIERARCHICAL REGRESSION MODELS
  103. 20.1 Two-factor Experimental Designs and Multiple Regression 588
  104. 20.2 Examples of EM Algorithms 599
  105. 20.3 Law Schools, Field Mice and Professional Football Teams 613
  106. 20.4 A Longitudinal Study of Educational Achievements 624
  107. 20.5 Ovarian Follicle and Calcium Supplement 627
  108. 20.6 Applications of Hierarchical Generalized Linear Models 630
  109. 20.7 Infectious Disease Data of Indonesia 642
  110. 20.8 Epileptic Seizure 646
  111. 20.9 Eight Guinea Pigs 648
  112. 20.10 Canadian Temperature 653
  113. 20.11 CD4 Cell 656
  114. Chapter 21 APPLICATIONS OF HIERARCHICAL QUANTILE REGRESSION MODELING
  115. 21.1 Household Electricity Demands 661
  116. 21.2 Mathematics Education in Canada 673
  117. 21.3 The Mean Pixel Intensity of Lymphnodes in the CT Scan 679
  118. 21.4 Applications of Composite Hierachical Linear Quantile Regression 685
  119. 21.5 Applications of Semi-HCQR Method to Partial HIV Monitoring Data 688
  120. Bibliographic Notes 692
  121. Bibliography 693
  122. Index 734
Downloaded on 14.12.2025 from https://www.degruyterbrill.com/document/doi/10.1051/978-2-7598-3719-9.c073/html
Scroll to top button