Chapter
Licensed
Unlicensed
Requires Authentication
14.1 Introduction
-
Maozai TIAN
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Preface iii
- Contents vii
-
Part I QUANTILE REGRESSION MODELLING
-
Chapter 1 LINEAR QUANTILE REGRESSION
- 1.1 Education: Mathematical Achievements 3
- 1.2 Large Sample Properties 16
- 1.3 Bibliographic Notes 19
-
Chapter 2 NONPARAMETRIC QUANTILE REGRESSION
- 2.1 Robust Local Approximation Method 20
- 2.2 Nonparametric Function Estimation 40
- 2.3 Local Linear Quantile Regression 55
-
Chapter 3 ADAPTIVE QUANTILE REGRESSION
- 3.1 Locally Constant Adaptive Quantile Regression 69
- 3.2 Locally Linear Adaptive Quantile Regression 82
-
Chapter 4 ADAPTIVE QUANTILES REGRESSION
- 4.1 Additive Conditional Quantiles with High-Dimensional Covariates 91
- 4.2 Nonparametric Estimation 105
-
Chapter 5 QUANTILE REGRESSION BASED ON VARYING-COEFFICIENT MODELS
- 5.1 Adaptive Quantile Regression Based on Varying-coefficient Models 127
- 5.2 Varying-coefficient Models with Heteroscedasticity 143
-
Chapter 6 SINGLE-INDEX QUANTILE REGRESSION
- 6.1 Single Index Models 163
- 6.2 CQR for Varying Coefficient Single-index Models 179
-
Chapter 7 QUANTILE AUTOREGRESSION
- 7.1 Introduction 196
- 7.2 The Model 197
- 7.3 Estimation 203
- 7.4 Quantitle Monotonicity 208
- 7.5 Inference 209
-
Chapter 8 COMPOSITE QUANTILE REGRESSION
- 8.1 Composite Quantile and Model Selection 213
- 8.2 Local Quantile Regression 229
-
Chapter 9 HIGH DIMENSIONAL QUANTILE REGRESSION
- 9.1 Diagnostic for Ultra High Heterogeneity 248
- 9.2 Bayesian Quantile Regression 264
-
Part II HIERARCHICAL MODELING
-
Chapter 10 HIERARCHICAL LINEAR MODELS
- 10.1 Bayes Estimates 273
- 10.2 Maximum Likelihood from Incomplete Data 283
- 10.3 EM-algorithm 296
- 10.4 Iterative Generalized Least Squares 310
- 10.5 Scoring Algorithm 324
- 10.6 Newton-Raphson Algorithm 337
-
Chapter 11 HIERARCHICAL GENERALIZED LINEAR MODELS
- 11.1 Hierarchical Likelihood 354
- 11.2 A Gibbs Sampling Approach 383
-
Chapter 12 HIERARCHICAL NONLINEAR MODELS
- 12.1 Conditional Second-Order Generalized Estimating Equations 394
- 12.2 A Hybrid Estimator 407
-
Chapter 13 HIERARCHICAL SEMIPARAMETRIC MODELS
- 13.1 Hierarchical Semiparametric Nonlinear Mixed-Effects Models 429
- 13.2 Simultaneously Modeling for Mean-Covariance 444
-
Chapter 14 HIERARCHICAL SPLINE MODELS
- 14.1 Introduction 463
- 14.2 Nonparametric Estimation 465
- 14.3 WALD Tests for Regression Quantile Models 467
- 14.4 Conclusions 470
- 14.5 Bibliographic Notes 470
-
Chapter 15 HIERARCHIAL LINEAR QUANTILE MODELING
- 15.1 Introduction 473
- 15.2 The Hierarchical Quantile Regression Model 474
- 15.3 EQ Algorithm 475
- 15.4 Asymptotic Properties 477
- 15.5 Bibliographic Notes 483
-
Chapter 16 HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING 16.1 Introduction
- 16.1 Introduction 485
- 16.2 The Models and Estimation 487
- 16.3 Asymptotic Results 492
- 16.4 Conclusion 499
- 16.5 Bibliographic Notes 499
-
Chapter 17 COMPOSITE HIERARCHICAL LINEAR QUANTILE MODELING
- 17.1 Introduction 501
- 17.2 The Models 502
- 17.3 Estimation 504
- 17.4 Asymptotic Properties 506
- 17.5 Discussion 511
- 17.6 Bibliographic Notes 511
-
Chapter 18 COMPOSITE HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING
- 18.1 Introduction 513
- 18.2 The Models 515
- 18.3 Estimation and Algorithm 516
- 18.4 Asymptotic Properties 517
- 18.5 Discussion 522
- 18.6 Bibliographic Notes 523
-
Part IV LARGE SCALE APPLICATIONS TO REAL DATA
- Chapter 19 APPLICATIONS OF QUANTILE REGRESSION 527
- 19.1 Introduction 527
- 19.2 Applications to Mathematical Education Based on LQR 540
- 19.3 Application of Local LQR 556
- 19.4 The Widening Gap between the Rich and the Poor 560
- 19.5 Boston Housing Analysis Using AQR 561
- 19.6 The Analysis of Japanese Firms in the Chemical Industry by Employing AQR 565
- 19.7 The Analysis of Norwegian Air Pollution Bying Quantile Varying-coefficient Regression 568
- 19.8 Empirical Application to Air Pollution Based HVCMs 570
- 19.9 Boston Pricing by Single-index Quantile Regression 571
- 19.10 Boston Pricing Using VCSIM 575
- 19.11 Two Economic Time Series Basedbon the Quantile Autoregression 576
- 19.12 The UK Family Expenditure Using Local CQR Methodology 579
- 19.13 Analysis of Microarray Dataset 581
- 19.14 Analysis of Two Data Sets Through Bayesian Quantile Autoregression 585
-
Chapter 20 APPLICATIONS OF HIERARCHICAL REGRESSION MODELS
- 20.1 Two-factor Experimental Designs and Multiple Regression 588
- 20.2 Examples of EM Algorithms 599
- 20.3 Law Schools, Field Mice and Professional Football Teams 613
- 20.4 A Longitudinal Study of Educational Achievements 624
- 20.5 Ovarian Follicle and Calcium Supplement 627
- 20.6 Applications of Hierarchical Generalized Linear Models 630
- 20.7 Infectious Disease Data of Indonesia 642
- 20.8 Epileptic Seizure 646
- 20.9 Eight Guinea Pigs 648
- 20.10 Canadian Temperature 653
- 20.11 CD4 Cell 656
-
Chapter 21 APPLICATIONS OF HIERARCHICAL QUANTILE REGRESSION MODELING
- 21.1 Household Electricity Demands 661
- 21.2 Mathematics Education in Canada 673
- 21.3 The Mean Pixel Intensity of Lymphnodes in the CT Scan 679
- 21.4 Applications of Composite Hierachical Linear Quantile Regression 685
- 21.5 Applications of Semi-HCQR Method to Partial HIV Monitoring Data 688
- Bibliographic Notes 692
- Bibliography 693
- Index 734
Chapters in this book
- Frontmatter i
- Preface iii
- Contents vii
-
Part I QUANTILE REGRESSION MODELLING
-
Chapter 1 LINEAR QUANTILE REGRESSION
- 1.1 Education: Mathematical Achievements 3
- 1.2 Large Sample Properties 16
- 1.3 Bibliographic Notes 19
-
Chapter 2 NONPARAMETRIC QUANTILE REGRESSION
- 2.1 Robust Local Approximation Method 20
- 2.2 Nonparametric Function Estimation 40
- 2.3 Local Linear Quantile Regression 55
-
Chapter 3 ADAPTIVE QUANTILE REGRESSION
- 3.1 Locally Constant Adaptive Quantile Regression 69
- 3.2 Locally Linear Adaptive Quantile Regression 82
-
Chapter 4 ADAPTIVE QUANTILES REGRESSION
- 4.1 Additive Conditional Quantiles with High-Dimensional Covariates 91
- 4.2 Nonparametric Estimation 105
-
Chapter 5 QUANTILE REGRESSION BASED ON VARYING-COEFFICIENT MODELS
- 5.1 Adaptive Quantile Regression Based on Varying-coefficient Models 127
- 5.2 Varying-coefficient Models with Heteroscedasticity 143
-
Chapter 6 SINGLE-INDEX QUANTILE REGRESSION
- 6.1 Single Index Models 163
- 6.2 CQR for Varying Coefficient Single-index Models 179
-
Chapter 7 QUANTILE AUTOREGRESSION
- 7.1 Introduction 196
- 7.2 The Model 197
- 7.3 Estimation 203
- 7.4 Quantitle Monotonicity 208
- 7.5 Inference 209
-
Chapter 8 COMPOSITE QUANTILE REGRESSION
- 8.1 Composite Quantile and Model Selection 213
- 8.2 Local Quantile Regression 229
-
Chapter 9 HIGH DIMENSIONAL QUANTILE REGRESSION
- 9.1 Diagnostic for Ultra High Heterogeneity 248
- 9.2 Bayesian Quantile Regression 264
-
Part II HIERARCHICAL MODELING
-
Chapter 10 HIERARCHICAL LINEAR MODELS
- 10.1 Bayes Estimates 273
- 10.2 Maximum Likelihood from Incomplete Data 283
- 10.3 EM-algorithm 296
- 10.4 Iterative Generalized Least Squares 310
- 10.5 Scoring Algorithm 324
- 10.6 Newton-Raphson Algorithm 337
-
Chapter 11 HIERARCHICAL GENERALIZED LINEAR MODELS
- 11.1 Hierarchical Likelihood 354
- 11.2 A Gibbs Sampling Approach 383
-
Chapter 12 HIERARCHICAL NONLINEAR MODELS
- 12.1 Conditional Second-Order Generalized Estimating Equations 394
- 12.2 A Hybrid Estimator 407
-
Chapter 13 HIERARCHICAL SEMIPARAMETRIC MODELS
- 13.1 Hierarchical Semiparametric Nonlinear Mixed-Effects Models 429
- 13.2 Simultaneously Modeling for Mean-Covariance 444
-
Chapter 14 HIERARCHICAL SPLINE MODELS
- 14.1 Introduction 463
- 14.2 Nonparametric Estimation 465
- 14.3 WALD Tests for Regression Quantile Models 467
- 14.4 Conclusions 470
- 14.5 Bibliographic Notes 470
-
Chapter 15 HIERARCHIAL LINEAR QUANTILE MODELING
- 15.1 Introduction 473
- 15.2 The Hierarchical Quantile Regression Model 474
- 15.3 EQ Algorithm 475
- 15.4 Asymptotic Properties 477
- 15.5 Bibliographic Notes 483
-
Chapter 16 HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING 16.1 Introduction
- 16.1 Introduction 485
- 16.2 The Models and Estimation 487
- 16.3 Asymptotic Results 492
- 16.4 Conclusion 499
- 16.5 Bibliographic Notes 499
-
Chapter 17 COMPOSITE HIERARCHICAL LINEAR QUANTILE MODELING
- 17.1 Introduction 501
- 17.2 The Models 502
- 17.3 Estimation 504
- 17.4 Asymptotic Properties 506
- 17.5 Discussion 511
- 17.6 Bibliographic Notes 511
-
Chapter 18 COMPOSITE HIERARCHICAL SEMIPARAMETRIC QUANTILE MODELING
- 18.1 Introduction 513
- 18.2 The Models 515
- 18.3 Estimation and Algorithm 516
- 18.4 Asymptotic Properties 517
- 18.5 Discussion 522
- 18.6 Bibliographic Notes 523
-
Part IV LARGE SCALE APPLICATIONS TO REAL DATA
- Chapter 19 APPLICATIONS OF QUANTILE REGRESSION 527
- 19.1 Introduction 527
- 19.2 Applications to Mathematical Education Based on LQR 540
- 19.3 Application of Local LQR 556
- 19.4 The Widening Gap between the Rich and the Poor 560
- 19.5 Boston Housing Analysis Using AQR 561
- 19.6 The Analysis of Japanese Firms in the Chemical Industry by Employing AQR 565
- 19.7 The Analysis of Norwegian Air Pollution Bying Quantile Varying-coefficient Regression 568
- 19.8 Empirical Application to Air Pollution Based HVCMs 570
- 19.9 Boston Pricing by Single-index Quantile Regression 571
- 19.10 Boston Pricing Using VCSIM 575
- 19.11 Two Economic Time Series Basedbon the Quantile Autoregression 576
- 19.12 The UK Family Expenditure Using Local CQR Methodology 579
- 19.13 Analysis of Microarray Dataset 581
- 19.14 Analysis of Two Data Sets Through Bayesian Quantile Autoregression 585
-
Chapter 20 APPLICATIONS OF HIERARCHICAL REGRESSION MODELS
- 20.1 Two-factor Experimental Designs and Multiple Regression 588
- 20.2 Examples of EM Algorithms 599
- 20.3 Law Schools, Field Mice and Professional Football Teams 613
- 20.4 A Longitudinal Study of Educational Achievements 624
- 20.5 Ovarian Follicle and Calcium Supplement 627
- 20.6 Applications of Hierarchical Generalized Linear Models 630
- 20.7 Infectious Disease Data of Indonesia 642
- 20.8 Epileptic Seizure 646
- 20.9 Eight Guinea Pigs 648
- 20.10 Canadian Temperature 653
- 20.11 CD4 Cell 656
-
Chapter 21 APPLICATIONS OF HIERARCHICAL QUANTILE REGRESSION MODELING
- 21.1 Household Electricity Demands 661
- 21.2 Mathematics Education in Canada 673
- 21.3 The Mean Pixel Intensity of Lymphnodes in the CT Scan 679
- 21.4 Applications of Composite Hierachical Linear Quantile Regression 685
- 21.5 Applications of Semi-HCQR Method to Partial HIV Monitoring Data 688
- Bibliographic Notes 692
- Bibliography 693
- Index 734