Characterization of Anisotropic Properties of Hot Compacted Self-Reinforced Composites (SRCs) via Thermal Diffusivity Measurement
-
H.-P. Heim
Abstract
The mechanical properties of self-reinforced composites (SRCs) produced in a hot compaction process significantly depend on the process parameters. Only a little deviation of the process temperature or pressure causes the component to act differently under mechanical load. This is a chance and a challenge at the same time, since this process is difficult to handle but by properly controlling the process parameters, the mechanical properties can be adjusted, even locally for one component. In this research SRC are manufactured in a hot compaction process. A correlation between process parameters and density is found. Density increased from 0,8 to 0,91 g/cm³ by increasing temperature and pressure in the hot compaction process. The different thermal properties in the direction of orientation (IP) and transverse to orientation (TP) are measured with a laser flash device. It was found that, due to a change in density and molecular orientation, diffusivity and conductivity are influenced in different degrees in IP and TP directions. For interpretation of thermal measurement results, microstructures are analysed with a confocal laser scanning microscope after preparing the specimen with a permanganate etching. A schematic model of conductive path is worked out and discussed. With measurement data the anisotropy of IP and TP diffusivity is calculated, and a model is built to describe relative density related to anisotropy. The highest anisotropy between IP and TP diffusivity was calculated with a ratio of 6 at a relative density of approximately 0,82 g/cm³. Since mechanical properties in correlation to process parameters have already been investigated, results of this investigation, in combination with previous research on mechanical properties, will enable the development of a non-destructive testing method for SRCs by measuring the thermal diffusivity.
References
Alcock, B., “Single Polymer Composites Based on Polypropylene: Processing and Properties”, PhD Thesis, Queen Mary University, London (2004)Search in Google Scholar
Andrzejewski, J., Szostak, M., Bak, T. and Trzeciak, M., “The Influence of Processing Conditions on the Mechanical Properties and Structure of Poly(ethylene terephthalate) Self-Reinforced Composites”, J. Thermoplast. Compos. Mater., 29, 1194–1209 (2016) 10.1177/0892705714563117Search in Google Scholar
Bai, L., Zhao, X., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B. and Yang, W., “Effect of Temperature, Crystallinity and Molecular Chain Orientation on the Thermal Conductivity of Polymers: A Case Study of PLLA”, J. Mater. Sci., 53, 10543–10553 (2018) 10.1007/s10853-018-2306-4Search in Google Scholar
Bledzki, A., Heim, H.-P., Paßmann, D. and Ries, A., “Chapter No. 22 Manufacturing of Self-Reinforced All-PP Composites”, in Synthetic Polymer-Polymer Composites, Bhattacharyya, D., Fakirov, S. (Eds.), Hanser, Cincinnati, p. 719–738 (2012) 10.3139/9781569905258.022Search in Google Scholar
Bledzki, A., Paßmann, D., Ries, A. und Cate, A., “Funktionelle Gradierung der Impakteigenschaften eigenverstärkter PP-Faserverbunde beim Heißkompaktieren”, Mater. Test., 50, 623–631 (2008) 10.3139/120.100924Search in Google Scholar
Breiling, A., Ehrenstein, G. und Varga, J., “Ätzen von Kunststoffen – Eine Präparationstechnik für mikroskopische Untersuchungen”, Materialprüfung, 39, 81–85 (1997)Search in Google Scholar
Chen, J., “Fabrication and Mechanical Properties of Self-Reinforced Poly(ethylene terephthalate) Composites”, eXPRESS Polym. Lett., 5, 228–237 (2011) 10.3144/expresspolymlett.2011.22Search in Google Scholar
Ehrenstein, G.: Polymerwerkstoffe – Struktur, Eigenschaften, Anwendung, 2nd Edition, Hanser, München, Wien (1999)Search in Google Scholar
Heim, H.-P., Rohde, B. and Ries, A., “Morphology-Property-Relationship of Thermo-Mechanically Graded Self-Reinforced Polypropylene Composites”, in PPS (Ed.), AIP Conference Proceedings, Vol.1593, 776–779 (2013a) 10.1063/1.4873890Search in Google Scholar
Heim, H.-P., Tillmann, W., Ries, A., Sievers, N., Rohde, B. and Zielke, R., “Visualisation of the degrees of Compaction of Self-Reinforced Polypropylene Composites by Means of Ultrasonic Testing”, J. Plast. Technol., 9, 276–294 (2013b)Search in Google Scholar
Hellmuth, W., Kilian, H.-G. und Müller, F. H., “Anisotropie deformierter physikalischer Netzwerke am Beispiel der Vinylpolymeren”, Kolloid Z. Z. Polym., 218, 10–30 (1967) 10.1007/BF01517271Search in Google Scholar
Hellwege, K.-H., Hennig, J. and Knappe, W., “Anisotropie der Wärmeausdehnung und Wärmeleitung in einachsig verstreckten amorphen Hochpolymeren”, Kolloid Z. Z. Polym., 188, 121–127 (1963) 10.1007/BF01499903Search in Google Scholar
Hine, P., Bonner, M., Ward, I., Swolfs, Y. and Verpoest, I., “The Influence of the Hybridisation Configuration on the Mechanical Properties of Hybrid Self Reinforced Polyamide 12/Carbon Fibre Composites”, Composites Part A, 95, 141–151 (2017) 10.1016/j.compositesa.2016.12.029Search in Google Scholar
Hine, P., Bonner, M., Ward, I., Swolfs, Y., Verpoest, I. and Mierzwa, A., “Hybrid Carbon Fibre/Nylon 12 Single Polymer Composites”, Composites Part A, 65, 19–26 (2014) 10.1016/j.compositesa.2014.05.020Search in Google Scholar
Homberg, W., Biermann, D., Heim, H.-P. (Eds.): Functionally Graded Materials in Industrial Mass Production/Fundamentals, 1st Edition, Verlag Wissenschaftliche Scripten, Auerbach/Vogtl. (2013)Search in Google Scholar
Jerpdal, L., Åkermo, M., “Influence of Fibre Shrinkage and Stretching on the Mechanical Properties of Self-Reinforced Poly(ethylene terephthalate) Composite”, J. Reinf. Plast. Compos., 33, 1644–1655 (2014) 10.1177/0731684414541018Search in Google Scholar
Jerpdal, L., Åkermo, M., Stahlberg, D. and Herzig, A., “Process Induced Shape Distortions of Self-Reinforced Poly(ethylene terephthalate) Composites”, Compos. Struct., 193, 29–34 (2018) 10.1016/j.compstruct.2018.03.038Search in Google Scholar
Jerpdal, L., Stahlberg, D. and Åkermo, M., “Influence of Fibre Stretching on the Microstructure of Self-Reinforced Poly(ethylene terephthalate) Composite”, J. Reinf. Plast. Compos., 35, 1634–1641 (2016) 10.1177/0731684416662328Search in Google Scholar
Kurabayashi, K., “Anisotropic Thermal Properties of Solid Polymers”, Int. J. Thermophys., 22, 277–288 (2001) 10.1023/A:1006728223978Search in Google Scholar
Kurabayashi, K., Goodson, K. E., “Impact of Molecular Orientation on Thermal Conduction in Spin-Coated Polyimide Films”, J. Appl. Phys., 86, 1925 (1999) 10.1063/1.370989Search in Google Scholar
Mesquita, F., van Gysel, A., Selezneva, M., Swolfs, Y., Lomov, S. V. and Gorbatikh, L., “Flexural Behaviour of Corrugated Panels of Self-Reinforced Polypropylene Hybridised with Carbon Fibre: An Experimental and Modelling Study”, Composites Part B, 153, 437–444 (2018) 10.1016/j.compositesb.2018.09.017Search in Google Scholar
Novichenok, L. N., Ovchinnikova, S. M., “Thermal Conductivity of Certain Oriented Polymers”, J. Eng. Phys. Thermophys., 42, 648–651 (1982) 10.1007/BF00835097Search in Google Scholar
Olley, R., Hodge, A. and Bassett, D., “A Permanganic Etchant for Polyolefines”, J. Polym. Sci., Part B: Polym. Phys., 17, 627–643 (1979) 10.1002/pol.1979.180170406Search in Google Scholar
Paßmann, D., “Prozessinduzierte Gradierung eigenverstärkter Polypropylen-Faserverbunde beim Heißkompaktieren und Umformen”, PPH ZAPOL Dmochowski, Sobczyk Spółka Jawna, Szczecin (2009)Search in Google Scholar
Pietralla, M., “Anisotrope Wärmeleitfähigkeit in Polymeren”, Colloid Polym. Sci., 259, 111–129 (1981) 10.1007/BF01384958Search in Google Scholar
Poulikidou, S., Jerpdal, L., Björklund, A. and Åkermo, M., “Environmental Performance of Self-Reinforced Composites in Automotive Applications – Case Study on a Heavy Truck Component”, Mater. Des., 103, 321–329 (2016) 10.1016/j.matdes.2016.04.090Search in Google Scholar
Ries, A.: Thermo-mechanische Gradierung eigenverstärkter Polypropylen-Composite, Kassel University Press, Kassel (2015)Search in Google Scholar
Schneider, C., Kazemahvazi, S., Åkermo, M. and Zenkert, D., “Compression and Tensile Properties of Self-Reinforced Poly(ethylene terephthalate)-Composites”, Polym. Test., 32, 221–230 (2013) 10.1016/j.polymertesting.2012.11.002Search in Google Scholar
Selezneva, M., Swolfs, Y., Katalagarianakis, A., Ichikawa, T., Hirano, N. and Taketa, I., “The Brittle-to-Ductile Transition in Tensile and Impact Behavior of Hybrid Carbon Fibre/Self-Reinforced Polypropylene Composites”, Composites Part A, 109, 20–30 (2018) 10.1016/j.compositesa.2018.02.034Search in Google Scholar
Swolfs, Y., Cuyper, P., Callens, M., Verpoest, I. and Gorbatikh, L., “Hybridisation of Two Ductile Materials – Steel Fibre And Self-Reinforced Polypropylene Composites”, Composites Part A, 100, 48–54 (2017) 10.1016/j.compositesa.2017.05.001Search in Google Scholar
Tang, J., Swolfs, Y., Yang, M., Michielsen, K., Ivens, J., Lomov, S. and Gorbatikh, L., “Discontinuities as a Way to Influence the Failure Mechanisms and Tensile Performance of Hybrid Carbon Fiber/Self-Reinforced Polypropylene Composites”, Composites Part A, 107, 354–365 (2018) 10.1016/j.compositesa.2018.01.020Search in Google Scholar
Zhang, J., Peijs, T., “Self-Reinforced Poly(ethylene terephthalate) Composites by Hot Consolidation of Bi-Component PET Yarns”, Composites Part A, 41, 964–972 (2010) 10.1016/j.compositesa.2010.03.012Search in Google Scholar
Zhu, B., Liu, J., Wang, T., Han, M., Valloppilly, S., Xu, S. and Wang, X., “Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring”, ACS Omega, 2, 3931–3944 (2017) 10.1021/acsomega.7b00563Search in Google Scholar PubMed PubMed Central
© 2019, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Review Article
- Influence of Processing Conditions on the Preparation of Clay-Based Nanocomposites by Twin-Screw Extrusion
- Regular Contributed Articles
- Roll-to-Roll Hot Embossing of High Aspect Ratio Micro Pillars for Superhydrophobic Applications
- Simulation-Based Approach for Probing Rheology-Processing-Structure Relationships in Foam Blow Molding
- Characterization of Anisotropic Properties of Hot Compacted Self-Reinforced Composites (SRCs) via Thermal Diffusivity Measurement
- Flame Retardancy Effects on Intumescent Coatings with Vinyl Acetate Copolymers
- Preparation and Properties of Functionalized Lignin-Modified Polyvinyl Alcohol
- Study of Melt Spinning Processing Conditions for a Polyacrylonitrile Copolymer with a Water/Ethanol Mixture as a Plasticizer
- Enhancement of Injection Molding Consistency by Adjusting Velocity/Pressure Switching Time Based on Clamping Force
- Mechanical and Fracture Peculiarities of Polypropylene-Based Functionally Graded Materials Manufactured via Injection Molding
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts
Articles in the same Issue
- Contents
- Contents
- Review Article
- Influence of Processing Conditions on the Preparation of Clay-Based Nanocomposites by Twin-Screw Extrusion
- Regular Contributed Articles
- Roll-to-Roll Hot Embossing of High Aspect Ratio Micro Pillars for Superhydrophobic Applications
- Simulation-Based Approach for Probing Rheology-Processing-Structure Relationships in Foam Blow Molding
- Characterization of Anisotropic Properties of Hot Compacted Self-Reinforced Composites (SRCs) via Thermal Diffusivity Measurement
- Flame Retardancy Effects on Intumescent Coatings with Vinyl Acetate Copolymers
- Preparation and Properties of Functionalized Lignin-Modified Polyvinyl Alcohol
- Study of Melt Spinning Processing Conditions for a Polyacrylonitrile Copolymer with a Water/Ethanol Mixture as a Plasticizer
- Enhancement of Injection Molding Consistency by Adjusting Velocity/Pressure Switching Time Based on Clamping Force
- Mechanical and Fracture Peculiarities of Polypropylene-Based Functionally Graded Materials Manufactured via Injection Molding
- PPS News
- PPS News
- Seikei Kakou Abstracts
- Seikei-Kakou Abstracts