Home Appropriate Boundary Conditions in the Flow of Molten Polymers
Article
Licensed
Unlicensed Requires Authentication

Appropriate Boundary Conditions in the Flow of Molten Polymers

  • S. G. Hatzikiriakos
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

There is considerable experimental evidence that the classical no-slip boundary condition of fluid mechanics is not always a valid assumption for the flow of high molecular weight molten polymers. In fact, molten polymers slip at solid surfaces when the wall shear stress exceeds a critical value. Moreover, there exists a second critical wall shear stress value at which a transition from a weak to a strong slip takes place. The later corresponds to the case of an almost plug flow and it is accompanied by pressure oscillations in the case of capillary flow generated by a constant-speed piston-driven capillary rheometer. The two modes of slip (weak and strong) are due to flow-induced chain detachment/desorption directly from the polymer/wall interface and to chain disentanglement of the polymer chains in the bulk from a monolayer of polymer chains adsorbed at the interface. In this work, the two physical mechanisms of slip are discussed and validated on the basis of suitably analyzed experimental data. Based on these two modes of slip, the slip phenomena observed during the capillary flow of polymers (mainly polyethylenes) are explained including the absence of pressure oscillations in the capillary flow of branched polyethylenes.


Mail address: Savvas G. Hatzikiriakos, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada. E-mail:

References

Anastasiadis, S., Hatzikiriakos, S. G., “The Work of Adhesion of Polymer/Wall Interfaces and Its Association wth the Onset of Slip”, J. Rheol., 42, 795812(1998), DOI: 10.1122/1.550909Search in Google Scholar

Archer, L. A., “Chapter 4 Wall Slip: Measurement and Modelling Issues” in Polymer Processing Instabilities, Hatzikiriakos, S. G., and MiglerK. B., (Eds.), Marcel Dekker, New York, 73120(2005)Search in Google Scholar

Bagley, E. B., “End Corrections In the Capillary Flow of Polyethylene”, J. Appl. Phys., 28, 193209(1957), DOI: 10.1063/1.1722814Search in Google Scholar

Bergem, N., “Visualization Studies of Polymer Melt Flow Anomalies in Extrusion”, VIIth Int. Congr. Rheol., Swedish Soc. Rheol., 5055(1976)Search in Google Scholar

Bick, D. K., McLeish, T. C. B., “Topological Contributions to Nonlinear Elasticity In Branched Polymers,Phy. Rev. Lett., 76, 25872590(1996), PMid:10060737, DOI: 10.1103/PhysRevLett.76.2587Search in Google Scholar

deGennes, P. G., “Reptation of a Polymer Chain In Presence of Fixed Obstacles”, J. Chem Physics, 55, 572579(1971), DOI: 10.1063/1.1675789Search in Google Scholar

Brochard-Wyart, F., deGennes, P. G., “Shear-dependent Slippage at a Polymer/Solid Interface”, Langmuir, 8, 30333037(1992), DOI: 10.1021/la00048a030Search in Google Scholar

Delgadillo-Velázquez, O., Hatzikiriakos, S. G., “Processability of LLDPE/LDPE Blends: Capillary Extrusion Studies”, Polym. Eng. Sci., 47, 13171326(2007)10.1002/pen.20811Search in Google Scholar

Delgadillo-Velázquez, O., Hatzikiriakos, S. G., “Capillary Extrusion Studies of LLDPE/LDPE Blends: Effects of Manufacturing Technology of LLDPE and Long Chain Branching”, Int. Polym. Proc., 23, 385394(2008), DOI: 10.3139/217.2155Search in Google Scholar

Drda, P. A., Wang, S.-Q., “Stick-slip Transition at Polymer Melt/Solid Interfaces”, Phys. Rev. Lett., 75, 26982701(1995), PMid:10059382, DOI: 10.1103/PhysRevLett.75.2698Search in Google Scholar

El Kissi, N., Piau, J. P., “The Different Capillary Flow Regimes of Entangled Polydimethylsiloxane Polymers: Macroscopic Slip at the Wall, Hysteresis and Cork Flow”, J. Non-Newtonian Fluid Mech., 37, 5594(1990), DOI: 10.1016/0377-0257(90)80004-JSearch in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “Wall Slip of Molten High Density Polyethylene I. Sliding Plate Rheometer Studies”, J. Rheol., 35, 497523(1991), DOI: 10.1122/1.550178Search in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “Wall Slip of Molten High Density Polyethylene. II. Capillary Rheometer Studies”, J. Rheol., 36, 703741(1992a), DOI: 10.1122/1.550313Search in Google Scholar

Hatzikiriakos, S. G., Dealy, J. M., “Role of Slip And Fracture In The Oscillating Flow Of HDPE In A Capillary”, J. Rheol., 36, 845884(1992b), DOI: 10.1122/1.550320Search in Google Scholar

Hatzikiriakos, S. G., et al., “Effect of Interfacial Conditions on Wall Slip and Sharkskin Melt Fracure of HDPE”, Inter. Polym. Proc., 9, 330335(1993)Search in Google Scholar

Hatzikiriakos, S. G., “A Slip Model for Linear Polymers Based on Adhesive Failure”, Inter. Polym. Proc., 9, 135142(1993)Search in Google Scholar

Hatzikiriakos, S. G., Kalogerakis, N., “A Dynamic Slip Velocity Model for Molten Polymers Based on a Network Kinetic Theory”, Rheol. Acta, 33, 3847(1994), DOI: 10.1007/BF00453462Search in Google Scholar

Hatzikiriakos, S. G., et al., “Interfacial Phenomena in the Capillary Extrusion of Metallocene Polyethylenes”, J. Rheol., 41, 12991316(1997), DOI: 10.1122/1.550836Search in Google Scholar

Israelachvili, J. N.: Intermolecular and Surface Forces, Academic Press, New York(1985)Search in Google Scholar

Kalika, D., Denn, M. M., “Wall Slip and Extrudate Distortion in Linear Low Density Polyethylene”, J. Rheol., 31, 815834(1987), DOI: 10.1122/1.549942Search in Google Scholar

Larrazabal, H. J., et al., “On The Relationship between the Work of Adhesion and the Critical Shear Stress for the Onset of Flow Instabilities”, Rheol. Acta, 45, 705715(2006a), DOI: 10.1007/s00397-005-0028-4Search in Google Scholar

LarrazabalH.J., et al., “Effect of the Chemical and Morphological Conditions of the Die Wall on the Extrusion of Linear Polyolefins”, Inter. Polym. Proc., 21, 132140(2006b)10.3139/217.0067Search in Google Scholar

Lim, F. J., Schowalter, W. R., “Wall Slip of Narrow Molecular Weight Distribution Polybutadienes”, J. Rheol., 33, 13591382(1989), DOI: 10.1122/1.550073Search in Google Scholar

Migler, K. B., et al., “Slip Transition of a Polymer Melt under Shear Stress”, Phys. Rev. Lett., 70, 287290(1993), PMid:10054074, DOI: 10.1103/PhysRevLett.70.287Search in Google Scholar PubMed

Ramamurthy, A. V., “Wall Slip in Viscous Fluids and Influence of Materials of Construction”, J. Rheol., 30, 337357(1986), DOI: 10.1122/1.549852Search in Google Scholar

Vinogradov, G. V., et al., “Viscoelastic Properties and Flow of Narrow Polybutadienes and Polyisoprenes”, J. Polym. Sci. Part A-2, 10, 10611075(1972)10.1002/pol.1972.160100609Search in Google Scholar

Wang, S.-Q., Drda, P. A., “Superfluid-like Stick-slip Transition in Capillary Flow of Linear Polyethylene Melts. 1. General Features”, Macromolecules, 29, 26272633(1996a), DOI: 10.1021/ma950898qSearch in Google Scholar

Wang, S.-Q., Drda, P. A., “Stick-slip Transition in Capillary Flow of Polyethylene. 2. Molecular Weight Dependence and Low Temperature Anomaly”, Macromolecules, 29, 41154119(1996b), DOI: 10.1021/ma951512eSearch in Google Scholar

Wise, G. M., et al., “Surface Mobility and Slip of Polybutadiene Melts in Shear Flow”, J. Rheol., 44, 549567(2000), DOI: 10.1122/1.551100Search in Google Scholar

Received: 2009-07-01
Accepted: 2009-09-16
Published Online: 2013-04-06
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, Munich

Downloaded on 22.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.2304/html
Scroll to top button