Startseite Effect of Clay on Thermal, Mechanical and Gas Barrier Properties of Biodegradable Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Clay on Thermal, Mechanical and Gas Barrier Properties of Biodegradable Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Nanocomposites

  • A. Bhatia , R. K. Gupta , S. N. Bhattacharya und H. J. Choi
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A series of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS)/layered silicate nancomposites were prepared by simple melt extrusion of PLA/PBS/Cloisite 30BX (organically modified MMT) clay. Extruded and compression moulded samples containing 1, 3, 5, 7 and 10 wt.% of clay having 80 and 20 wt.% of PLA and PBS respectively, were prepared to investigate morphological, thermal, mechanical and gas barrier properties of these biodegradable nanocomposites. Wide angle X-ray diffraction (WAXD) was used to assess the periodic distance of the clay layers. WAXD indicated an exfoliated structure for nanocomposites containing 1 and 3 wt.% of C30BX, while, dominantly intercalated structures were noticed for nanocomposites having 5, 7 and 10 wt.% of C30BX. Transmission Electron Microscopy (TEM) images confirmed mixed morphology of intercalated and exfoliated structure even for nanocomposites having 1 and 3 wt.% of C30BX, while some clusters or agglomerated tactoids were detected for higher clay containing (>3 wt.%) nanocomposites. Thermo gravimetric analysis (TGA) revealed the thermal stabilities of polymer blend and their nancomposites. Nanocomposite with 3 wt.% C30BX clay showed enhanced thermal stability compared to other nanocomposites. The effect on the crystallinity, investigated by Modulated Differential Scanning Calorimetry (MDSC) showed slight improvement for nanocomposites having 1, 3, 7 and 10 wt.% of C30BX studied. However, nanocomposites having 5 wt.% of clay content showed higher crystallinity compared to the rest of the nanocomposites. Mechanical properties (tensile strength, % elongation at break and Young's modulus) were measured by Instron Universal Testing Machine. Tensile strength and Young's modulus initially increased for nanocomposites of up to 3 wt.% of clay but then decreased with the introduction of more clay. Oxygen permeabilities of the nanocomposites were also measured. Barrier properties were improved by approximately 26% with the increase of clay content in these nanocomposites.


Mail address: Rahul K. Gupta, Rheology and Materials Processing Centre, School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, Vic 3001, Australia. E-mail:

References

Bharadwaj, R. K., “Modeling the Barrier Properties of Polymer-Layered Silicate NanocompositesMacromolecules, 34, 918992(2001), DOI: 10.1021/ma010780bSuche in Google Scholar

Bhatia, A., et al., “Compatibility of Biodegradable Poly(lactic acid) (PLA) and Poly(butylene succinate) (PBS) Blends for Packaging ApplicationsKorea-Australia Rheology Journal, 19, 125131(2007)Suche in Google Scholar

Chang, J.-H., An, Y. U., “Nanocomposites of Polyurethane with various Organoclays: Thermomechanical Properties, Morphology, and Gas PermeabilityJ. Polym. Sci., Part B: Polym. Phys., 40, 670677(2002), DOI: 10.1002/polb.10124Suche in Google Scholar

Chang, J. H., et al., “Poly(lactic acid) Nanocomposites with Various Organoclays. I. Thermomechanical Properties, Morphology, and Gas PermeabilityJ. Polym. Sci., Part B: Polym. Phys., 41, 94103(2003), DOI: 10.1002/polb.10349Suche in Google Scholar

Chen, G. X., Yoon, J. S., “Morphology and Thermal Properties of Poly(lactide)/Poly(butylene succinate-butylene adipate) Compounded with Twice Functionalized ClayJ. Polym. Sci., Part B: Polym. Phys., 43, 478487(2005), DOI: 10.1002/polb.20345Suche in Google Scholar

Doi, Y., Fukuda, K., “Biodegradable Plastics and PolymerStudies in Polymer Science, 12, 627(1994)Suche in Google Scholar

Fischer, H. R., et al., “Nanocomposites from Polymers and Layered MineralsActa Polym., 50, 122126(1999), DOI: 10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-XSuche in Google Scholar

Folkes, M. J., Hope, P. S., Polymer Blends and Alloys, Blackie Academic and Professional, New York(1993)10.1007/978-94-011-2162-0Suche in Google Scholar

Fujimaki, T., “Processability and Properties of Aliphatic Polyesters, BIONOLLE, Synthesized by Polycondensation ReactionPolym. Degrad. Stab., 59, 209214(1998), DOI: 10.1016/S0141-3910(97)00220-6Suche in Google Scholar

Garlotta, D., “A Literature Review of Poly(lactic acid)J. Polym. Environ., 9, 6384(2001), DOI: 10.1023/A:1020200822435Suche in Google Scholar

Gelfer, M. Y., et al., “Effects of Organoclays on Morphology and Thermal and Rheological Properties of Polystyrene and Poly(methyl methacrylate) BlendsJ. Polym. Sci., Part B: Polym. Phys., 41, 4454(2003), DOI: 10.1002/polb.10360Suche in Google Scholar

Gopakumar, T. G., et al., “Influence of Clay Exfoliation on the Physical Properties of Montmorillonite/Polyethylene CompositesPolymer, 43, 54835491(2002), DOI: 10.1016/S0032-3861(02)00403-2Suche in Google Scholar

Hedenqvist, M., Gedde, U. W., “Diffusion of Small-Molecule Penetrants in Semicrystalline PolymersProg. Poly. Sci., 21, 299333(1996), DOI: 10.1016/0079-6700(95)00022-4Suche in Google Scholar

Khatua, B. B., et al., “Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly(ethylene-propylene) Rubber BlendsMacromolecules, 37, 24542459(2004), DOI: 10.1021/ma0352072Suche in Google Scholar

Krikorian, V., Pochan, D. J., “Poly(L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and PropertiesChem. Mater., 15, 43174324(2003), DOI: 10.1021/cm034369+Suche in Google Scholar

Krook, M., et al., “Barrier and Mechanical Properties of Montmorillonite/Polyesteramide NanocompositesPolym. Eng. Sci., 42, 12381246(2002), DOI: 10.1002/pen.11027Suche in Google Scholar

Lee, S., Lee, J. W., “Characterisation and Processing of Biodegradable Polymer Blends of Poly(lactic acid) with Poly(butylene succinate adipate)Korea-Australia Rheology Journal, 17, 7177(2005)Suche in Google Scholar

Lee, S. R., et al., “Microstructure, Tensile Properties and Biodegradability of Aliphatic Polyester/Clay NanocompositesPolymer, 34, 24952500(2002), DOI: 10.1016/S0032-3861(02)00012-5Suche in Google Scholar

Mehrabzadeh, M., Kamal, M. R., “Polymer-Clay Nanocomposites Based on Blends of Polymamide-6 and PolyethyleneCan. J. Chem. Eng., 80, 10831092(2002)10.1002/cjce.5450800610Suche in Google Scholar

Messersmith, P. B., Giannelis, E. P., “Synthesis and Characterization of Layered Silicate-Epoxy NanocompositesChem. Mater., 6, 171925(1994), DOI: 10.1021/cm00046a026Suche in Google Scholar

Nielsen, L. E., “Models for the Permeability of Filled Polymers SystemsJ. Macromol. Sci., Part A Pure Appl. Chem., 1, 92942(1967), DOI: 10.1080/10601326708053745Suche in Google Scholar

Ogata, N., et al., “Structure and Thermal/Mechanical Properties of Poly(L-lactide)-Clay BlendJ. Appl. Polym. Sci., 59, 3743(1997)Suche in Google Scholar

Qi, F., Hanna, M. A., “Rheological Properties of Amorphous and Semicrystalline Polylactic Acid PolymersInd. Crops Prod., 10, 4753(1999), DOI: 10.1016/S0926-6690(99)00009-6Suche in Google Scholar

Ray, S. S., et al., “Structure and Properties of Nanocomposites Based on Poly(butylene succinate-co-adipate) and Organically Modified MontmorilloniteMacromol. Mater. Eng., 290, 759768(2005), DOI: 10.1002/mame.200500203Suche in Google Scholar

Roberts, R. C., “The Melting Behaviour of Bulk Crystallized PolymersJ. Polym. Sci., Part C: Polym. Lett., 8, 381384(1970)10.1002/pol.1970.110080512Suche in Google Scholar

Sekelik, D. J., et al., “Oxygen Barrier Properties of Crystallized and Talc-filled Poly(ethylene terephthalate)J. Polym. Sci., Part B: Polym. Phys., 37, 847857(1999), DOI: 10.1002/(SICI)1099-0488(19990415)37:8<847::AID-POLB10>3.0.CO;2-3Suche in Google Scholar

Shibata, M., et al., “Mechanical Properties, Morphology, and Crystallization Behaviour of Blends of Poly(l-lactide) with Poly(butylene succinate-co-l-lactate) and Poly(butylene succinate)Polymer, 47, 35573564(2006), DOI: 10.1016/j.polymer.2006.03.065Suche in Google Scholar

Sweet, G. E., Bell, J. P., “Multiple Endotherm Melting Behaviour in Relation to Polymer MorphologyJ. Polym. Sci., Part B: Polym. Phys., 10, 12731283(1972)10.1002/pol.1972.160100707Suche in Google Scholar

Thellen, C., et al., “Influence of Montmorillonite Layered Silicate on Plasticized Poly(L-lactide) Blown FilmsPolymer, 46, 1171611727(2005), DOI: 10.1016/j.polymer.2005.09.057Suche in Google Scholar

Vieth, W. R., Diffusion in and Through Polymers, Hanser, Munich(1991)Suche in Google Scholar

Voulgaris, D., Petridis, D., “Emulsifying Effect of Dimethyldioctadecylammonium-Hectorite in Polystyrene/Poly(ethyl methacrylate) BlendsPolymer, 43, 22132218(2002), DOI: 10.1016/S0032-3861(02)00039-3Suche in Google Scholar

Wang, Y., et al., “Compatibilization of Immiscible Poly(propylene)/Polystyrene Blends Using ClayMacromol. Rapid Commun., 24, 231235(2003), DOI: 10.1002/marc.200390026Suche in Google Scholar

Zanetti, M., et al., “Combustion Behaviour of EVA/Fluorohectorite NanocompositesPolym. Degrad. Stab., 74, 413417(2001), DOI: 10.1016/S0141-3910(01)00178-1Suche in Google Scholar

Received: 2008-07-21
Accepted: 2009-11-30
Published Online: 2013-04-06
Published in Print: 2010-03-01

© 2010, Carl Hanser Verlag, Munich

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.2214/html
Button zum nach oben scrollen