Home Modeling of isothermal bainite formation based on the nucleation kinetics
Article
Licensed
Unlicensed Requires Authentication

Modeling of isothermal bainite formation based on the nucleation kinetics

  • Stefan M. C. van Bohemen and Jilt Sietsma
Published/Copyright: May 23, 2013
Become an author with De Gruyter Brill

Abstract

Using a new approach to modeling bainite nucleation, the kinetics of isothermal bainite formation have been calculated under the assumption of displacive growth. The nucleation rate is assumed to depend on the number density of potential nucleation sites Ni, a factor λ accounting for autocatalytic nucleation, and an activation energy Q*. Compatible with the theory for athermal martensite nucleation, Ni is assumed to be proportional to the driving pressure. Analogous to the Koistinen – Marburger model for martensite formation, the average volume of bainitic sub-units is assumed to be constant over the extent of the transformation and the growth of sub-units is very fast, and thus the change in fraction is directly related to the nucleation rate of bainite. The model results in an analytical expression for the fraction bainite as a function of time that contains only two adjustable parameters: a (temperature independent) autocatalytic parameter λ and a rate parameter κ, which has a temperature dependence that is mainly governed by Q*. The calculations are compared with experimental fraction curves measured isothermally with dilatometry for the carbon steels C45, C50 and C60 at a range of temperatures. From the best agreement between the calculations and the experimental data it follows that Q* decreases linearly with temperature, which is consistent with other bainite nucleation models. By austenitizing steel C60 at different temperatures it is found that λ depends on the austenite grain size: when the austenite grain size is increased, λ becomes larger.


* Correspondence address, Dr. Stefan M. C. van Bohemen Delft University of Technology, Dept. of Materials Science and Engineering Mekelweg 2 NL-2628 CD Delft, The Netherlands Tel.: +31 152784984 Fax: +31 152786730 E-mail:

References

[1] R.F.Hehemann, K.R.Kinsman, H.I.Aaronson: Metall. Trans.3(1972)1077.10.1007/BF02642439Search in Google Scholar

[2] Y.Ohmori, T.Maki: Mater. Trans. JIM32(1991)631.10.2320/matertrans1989.32.631Search in Google Scholar

[3] B.C.Muddle, J.F.Nie: Scripta Mater.47(2002)187.10.1016/S1359-6462(02)00127-6Search in Google Scholar

[4] H.I.Aaronson, W.T.Reynolds, G.J.Shiflet, G.Spanos: Metall. Trans. A21(1990)1343.10.1007/BF02672557Search in Google Scholar

[5] H.K.D.H.Bhadeshia: Bainite in steels, The Institute of Materials, London(2001).Search in Google Scholar

[6] G.I.Rees, H.K.D.H.Bhadeshia: Materials Science and Technology8(1992)985.10.1179/mst.1992.8.11.985Search in Google Scholar

[7] M.J.Santofimia, F.G.Caballero, C.Capdevila, C.Garcia-Mateo, C.G.de Andres: Mater. Trans.47(2006)1492.10.2320/matertrans.47.1492Search in Google Scholar

[8] M.J.Santofimia, F.G.Caballero, C.Capdevila, C.Garcia-Mateo, C.G.de Andres: Mater. Trans.47(2006)2465.10.2320/matertrans.47.2465Search in Google Scholar

[9] D.Quidort, Y.J.M.Brechet: ISIJ Int.42(2002)1010.10.2355/isijinternational.42.1010Search in Google Scholar

[10] H.Matsuda, H.K.D.H.Bhadeshia: Proc. Royal Society London A460(2004)1707.10.1098/rspa.2003.1225Search in Google Scholar

[11] D.Gaude-Fugarolas, P.J.Jacques: ISIJ International46(2006)712.10.2355/isijinternational.46.712Search in Google Scholar

[12] P.J.Clemm, J.C.Fisher: Acta Metall.3(1955)70.10.1016/0001-6160(55)90014-6Search in Google Scholar

[13] S.E.Offerman, N.H.van Dijk, J.Sietsma, S.Grigull, E.M.Lauridsen, L.Margulies, H.F.Poulsen, M.T.Rekveldt, S.van der Zwaag: Science298(2002)1003.10.1126/science.1076681Search in Google Scholar

[14] C.L.Magee: The nucleation of martensite. In: Phase Transformations: American Society of Metals, 1970, 115.Search in Google Scholar

[15] G.B.Olson, A.L.Roitburd: Martensite1992.Search in Google Scholar

[16] V.Raghavan, M.Cohen: Acta Metall.20(1972)333.10.1016/0001-6160(72)90025-9Search in Google Scholar

[17] H.K.D.H.Bhadeshia: Acta Metall.29(1981)1117.10.1016/0001-6160(81)90063-8Search in Google Scholar

[18] G.B.Olson, M.Cohen: Metall. Trans. A7(1976)1915.10.1007/BF02659824Search in Google Scholar

[19] D.P.Koistinen, R.E.Marburger: Acta Metallurgica7(1959)59.10.1016/0001-6160(59)90170-1Search in Google Scholar

[20] S.A.Khan, H.K.D.H.Bhadeshia: Mater. Sci. Eng. A129(1990)257.10.1016/0921-5093(90)90273-6Search in Google Scholar

[21] S.M.C.van Bohemen, J.Sietsma, M.J.M.Hermans, I.M.Richardson: Acta Mater.51(2003)4183.10.1016/S1359-6454(03)00236-2Search in Google Scholar

[22] M.Cohen: Mater. Trans. JIM33(1992)178.10.2320/matertrans1989.33.178Search in Google Scholar

[23] N.A.Chester, H.K.D.H.Bhadeshia: J. Phys. IV7(1997)41.Search in Google Scholar

[24] J.W.Christian: The theory of phase transformations in metals and alloys, Pergamon Press, Oxford(1981).Search in Google Scholar

[25] V.Raghavan, A.R.Entwisle, in: Physical properties of martensite and bainite, special report No.93: Iron and steel institute(1965)30.Search in Google Scholar

[26] S.R.Pati, M.Cohen: Acta Metallurgica17(1969)189.10.1016/0001-6160(69)90058-3Search in Google Scholar

[27] S.R.Pati, M.Cohen: Acta Metallurgica19(1971)1327.10.1016/0001-6160(71)90069-1Search in Google Scholar

[28] M.Lin, G.B.Olson, M.Cohen: Acta Metall. Mater.41(1992)253.10.1016/0956-7151(93)90356-WSearch in Google Scholar

[29] T.A.Kop, J.Sietsma, S.Van der Zwaag: J. Mater. Sc.36(2001)519.10.1023/A:1004805402404Search in Google Scholar

[30] S.M.Cvan Bohemen, J.Sietsma: To be published.Search in Google Scholar

[31] A.Matsuzaki, H.K.D.H.Bhadeshia: Mater. Sc. Techn.15(1999)518.10.1179/026708399101506210Search in Google Scholar

Received: 2007-5-15
Accepted: 2008-4-21
Published Online: 2013-05-23
Published in Print: 2008-07-01

© 2008, Carl Hanser Verlag, München

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101695/html
Scroll to top button