Home Taguchi-Based Grey Relation Optimization of Machining Parameters and Cutting Path Strategies in CNC Pocket Milling Operations
Article
Licensed
Unlicensed Requires Authentication

Taguchi-Based Grey Relation Optimization of Machining Parameters and Cutting Path Strategies in CNC Pocket Milling Operations

  • Ugur Esme
Published/Copyright: September 28, 2014
Become an author with De Gruyter Brill

Abstract

This study has focused on the Taguchi-based multi-response optimization of the pocket milling process for an optimal parametric combination to yield minimum surface roughness within a minimum machining time using a combination of Grey relational analysis (GRA) and the Taguchi method on the CNC process of DIN 1.0038 medium carbon steel. Sixteen experimental runs based on an orthogonal array of the Taguchi method were performed to derive multi-objective functions to be optimized within the experimental range. The objective functions have been selected in relation to parameters of the pocket milling process, i. e., surface roughness and machining time. The Taguchi approach was followed by Grey relational analysis to solve the multi-response optimization problem. The significance of these factors on overall quality characteristics of the pocket milling process has also been evaluated quantitatively by a variance analysis method (ANOVA). Optimal results have been verified by validation experiments to calculate the effectiveness of the method. The application of this method showed that proper selection of the milling parameters produces better surface roughness within the minimum machining time.

Kurzfassung

Die diesem Beitrag zugrunde liegende Studie ist auf die Taguchi-basierte Optimierung der Bearbeitungsparameter des Taschenfräsprozesses fokussiert, um eine minimale Oberflächenrauheit innerhalb einer minimalen Bearbeitungszeit zu erreichen, wobei eine Kombination aus der Grey-Relationsanalyse (GRA) und des Taguchi-Verfahrens auf den CNC-Prozess eines Stahls DIN 1.0038 mit mittlerem Kohlenstoffgehalt angewendet wurde. Hierzu wurden sechzehn experimentelle Bearbeitungsvorgänge basierend auf einem orthogonalem Array der Taguchi-Methode ausgeführt, um Multi-Zielfunktionen abzuleiten, die innerhalb des experimentellen Rahmens optimiert werden sollten. Die Zielfunktionen wurden hinsichtlich der Parameter des Taschenfräsprozesses, nämlich der Oberflächenrauheit und der Bearbeitungszeit, ausgewählt. Nach dem Taguchi-basierten Ansatz folgte eine Grey-Relationsanalyse, um die Mehrfachantworten optimal zu lösen. Der Einflußgrad der Faktoren auf die Gesamtqualität des Taschenfräsprozesses wurde außerdem quantitativ mittels der Varianzanalyse (ANOVA) bestimmt. Die optimalen Ergebnisse wurden mit Hilfe von Validierungsexperimenten verifiziert, um die Effektivität der Methode zu ermitteln. Die Anwendung dieser Methode hat gezeigt, dass eine geeignete Auswahl der Fräsparameter zu einer verbesserten Oberflächenrauheit innerhalb einer minimalen Bearbeitungszeit führt.


*Correspondence Address Prof. Dr. Ugur Esme Mersin University Tarsus Technology Faculty Institute of Natural and Applied Sciences Department of Manufacturing Engineering 33400 Tarsus-Mersin, Turkey E-mail:

Dr. Ugur Esme is associate professor at Mersin University, Tarsus Technology Faculty, Department of Automotive Engineering, Turkey. He obtained his PhD degree from Cukurova University, Department of Mechanical Engineering, Turkey in 2006. His research areas include CAD/CAM technology, welding, modeling, designing, and water jet cutting applications.


References

1 M. Y.Wang, H. Y.Chang: Experimental study of surface roughness in slot end milling AL2014-T6, International Journal of Machine Tools & Manufacture44 (2004), pp. 515710.1016/j.ijmachtools.2003.08.011Search in Google Scholar

2 B.Buldum, A.Şık, U.Eşme, M. K.Külekci, Y.Kazançoğlu: Use of Grey-Taguchi Method for the Optimization of Oblique Turning Process of AZ91D Magnesium Alloy, Materials Testing54 (2012), pp. 77978510.3139/120.110392Search in Google Scholar

3 J. P.Fabricio, P. P.Anderson, P. B.Pedro, F. J.Roberto, B. S.Messias: Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays, Expert Systems with Applications39 (2012), pp. 77767787Search in Google Scholar

4 C.Basheer, U. A.Dabade, S. J.Suhas, V. V.Bhanuprasad: Modeling of surface roughness in precision machining of metal matrix composites using ANN, Journal of Materials Processing Technology197 (2008), pp. 43944410.1016/j.jmatprotec.2007.04.121Search in Google Scholar

5 C.Gologlu, N.Sakarya: The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method, Journal of Materials Processing Technology206 (2008), pp. 71510.1016/j.jmatprotec.2007.11.300Search in Google Scholar

6 V. S.Sharma, S.Dhiman, R.Sehgal, S. K.Sharma: Estimation of cutting forces and surface roughness for hard turning using neural networks, Journal of Intelligent Manufacturing19 (2008), pp. 47348310.1007/s10845-008-0097-1Search in Google Scholar

7 Y.Karpat, T.Özel: Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization, International Journal of Advanced Manufacturing Technology35 (2008), pp. 23424710.1007/s00170-006-0719-8Search in Google Scholar

8 P. G.Benardos, G. C.Vosniakos: Prediction of surface roughness in CNC in machining: A review, International Journal of Machine Tools and Manufacture43 (2003), pp. 833844Search in Google Scholar

9 T.Özel, Y.Karpat: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools and Manufacture45 (2005), pp. 46747910.1016/j.ijmachtools.2004.09.007Search in Google Scholar

10 D. K.Baek, T. J.Ko, H. S.Kim: A dynamic surface roughness model for face milling, Precision Engineering20 (1997), pp. 17117810.1016/S0141-6359(97)00043-3Search in Google Scholar

11 B.Ozcelik, M.Bayramoglu: The statistical modeling of surface roughness in high-speed flat end milling, International Journal of Machine Tools & Manufacture46 (2006), pp. 1395140210.1016/j.ijmachtools.2005.10.005Search in Google Scholar

12 G.Peigne, H.Paris, D.Brissaud: Surface shape prediction in high-speed milling, International Journal of Machine Tool & Manufacture44 (2004), pp. 1567157610.1016/j.ijmachtools.2004.06.005Search in Google Scholar

13 P.Franco, M.Estrems, F.Fuara: Influence of radial and axial runouts on surface roughness in face milling with round insert cutting tools, International Journal of Machine Tools & Manufacture44 (2004), pp. 1555156510.1016/j.ijmachtools.2004.06.007Search in Google Scholar

14 H. A.Kishawy, M.Dumitrescu, E. G.Ng, M. A.Elbestawi: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy, International Journal of Machine Tools & Manufacture45 (2005), pp. 21922710.1016/j.ijmachtools.2004.07.003Search in Google Scholar

15 A.Maria de SouzaJr., W. F.Salesb, S. C.Santosc, A. R.Machadod: Performance of single Si3N4 and mixed Si3N4CPCBN wiper cutting tools applied to high-speed face milling of cast iron, International Journal of Machine Tools & Manufacture45 (2005), pp. 335344Search in Google Scholar

16 S. H.Ryu, D.Ki, C.Chong, N.Chu: Roughness and texture generation on end milled surfaces, International Journal of Machine Tools & Manufacture46 (2006), pp. 40441210.1016/j.ijmachtools.2005.05.010Search in Google Scholar

17 A. L.Mantle, D. K.Aspinwall: Surface integrity of a high-speed milled gamma titanium aluminide, Journal of Materials Processing Technology118 (2001), pp. 14315010.1016/S0924-0136(01)00914-1Search in Google Scholar

18 M.Aloufi, T. J.Kazmierski: A response surface modelling approach to performance optimisation of kinetic energy harvesters, IJRRCS Simulation. Benchmarking and Modeling of Systems and Communication Networks (2011) pp. 18Search in Google Scholar

19 S. J.Lou, J. C.Chen: In-process surface roughness recognition (ISRR) system in end milling operations, International Journal Advanced Manufacturing Technology15 (1999), pp. 200209Search in Google Scholar

20 P. G.Benardos, G. C.Vosniakos: Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments, Robotics and Computer Integrated Manufacturing18 (2002), pp. 34335410.1016/S0736-5845(02)00005-4Search in Google Scholar

21 K. A.Shamsuddin, A. R.Ab-Kadir, M. H.Osman: A Comparison of Milling Cutting Path Strategies for Thin-Walled Aluminium Alloys Fabrication, The International Journal of Engineering And Science, The International Journal Of Engineering And Science2 (2013), pp. 18Search in Google Scholar

22 Y. M.Ertakin, Y.Kwon, T. L.Tseng: Identification of common sensory features for the control of CNC milling operations under varying cutting conditions, International Journal of Machine Tools & Manufacture43 (2003), pp. 89790410.1016/S0890-6955(03)00087-7Search in Google Scholar

23 W. H.Yang, Y. S.Tarng: Design Optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology84 (1998), pp. 12212910.1016/S0924-0136(98)00079-XSearch in Google Scholar

24 P. L. B.Oxley: Modeling machining processes with a view to their optimization and the adaptive control of metal cutting machine tools, Robotics and Computer-Integrated Manufacturing4 (1988), pp. 10311910.1016/0736-5845(88)90065-8Search in Google Scholar

25 G.Chryssolouris, M.Guillot: A comparison of statistical and AI approaches to the selection of process parameters in intelligent machining, Journal of Manufacturing Science and Engineering112 (1990), pp. 12213110.1115/1.2899554Search in Google Scholar

26 Y.Yao, X. D.Fang: Modeling of multivariate time series for tool wear estimation in finish turning, International Journal of Machine Tools and Manufacture32 (1992), pp. 49550810.1016/0890-6955(92)90041-ESearch in Google Scholar

27 C.Zhou, R. A.Wysk: An integrated system for selecting optimum cutting speeds and tool replacement times, International Journal of Machine Tools and Manufacture32 (1992), pp. 69570710.1016/0890-6955(92)90024-BSearch in Google Scholar

28 M. S.Chua, M.Rahman, Y. S.Wong, H. T.Loh: Determination of optimal cutting conditions using design of experiments and optimization techniques, International Journal of Machine Tools and Manufacture33 (1993), pp. 29730510.1016/0890-6955(93)90081-5Search in Google Scholar

29 A.Bendell, J.Disney, W. A.Pridmore: Taguchi Methods: Applications in World Industry, Springer, Berlin, Germany (1989)Search in Google Scholar

30 D. C.Montgomery: Design and Analysis of Experiments, Wiley, Singapore (1991)Search in Google Scholar

31 S.Datta, A.Bandyopadhyay, P. K.Pal: Grey-based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. International Journal of Advanced Manufacturing Technology39 (2008), pp. 1136114310.1007/s00170-007-1283-6Search in Google Scholar

32 U.Esme, M.Bayramoglu, Y.Kazancoglu, S.Özgun: Optimization of weld bead geometry in TIG welding process using Grey relation analysis and Taguchi method, Materiali in Tehnologije43 (2009), pp. 143149Search in Google Scholar

33 U.Esme, M. K.Kulekci, A.Akkurt, U.Seker, I.Ozkul: Mathematical modeling of diameter and circularity deviation in wire electrical discharge machining of a hot work tool steel, Materials Testing55 (2013), pp. 47247710.3139/120.110464Search in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-09-01

© 2014, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Burst Strength of Composite Cylinders – Assessment of the Type of Statistical Distribution
  5. Effects of Zn/Cu Ratio and Silicon on Microstructure, Mechanical Properties, Tarnish and Corrosion Resistance of As-Cast 940 Silver Alloys
  6. Analysis of the Frequency as an Integral Method for the Testing of Anisotropic 3D Sheet Metal Structure
  7. Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process
  8. The Mechanical and Electrical Properties of the Ternary Bi-Ga-Sb System
  9. Experimental Investigation of the Corrosion Mechanism of Cemented Soils in Magnesium Sulfate Solution
  10. Experimental and Analytical Study of Masonry Constructions Reinforced with Bed Joints
  11. The Fracture Toughness of Fe2B Formed on Boronized AISI 304
  12. Effects of Ferroboron and Ferrochromium Powder Addition on Abrasive Wear Resistance of Fe-Based Hardfacing Coatings
  13. Fabrication of Al/Mg Bimetal Compound Casting by Lost Foam Technique and Liquid-Solid Process
  14. Effects of Si and Zn on Machinability and Wear Resistance of AZ91 and AS91 Magnesium Alloys
  15. DIRECTT-Rekonstruktionen im Vergleich zur gefilterten Rückprojektion
  16. Reduzierung von Missing-Wedge-Artefakten der CT mit DIRECTT
  17. Röntgentomografische Untersuchung eines kommerziellen Lithium-Ionen-Kondensators*
  18. Machining Parameter Optimization of Bidirectional CFRP Composite Pipe by Genetic Algorithm
  19. Investigation of Lost Foam Casted Aluminum Bimetal Microstructures
  20. Taguchi-Based Grey Relation Optimization of Machining Parameters and Cutting Path Strategies in CNC Pocket Milling Operations
  21. Reliable Evaluation of Acceptability of Weld for Final Disposal Based on the Canister Copper Weld Inspection Using Different NDT Methods
  22. Evaluation of the Reliability of NDTesting in Russian Railway Transport
  23. Vorschau/Preview
  24. Vorschau
Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110626/html
Scroll to top button