Home ANN-Based Wear Performance Prediction for Plasma Nitrided Ti6Al4V Alloy
Article
Licensed
Unlicensed Requires Authentication

ANN-Based Wear Performance Prediction for Plasma Nitrided Ti6Al4V Alloy

  • Fatih Kahraman , Süleyman Karadeniz and Hülya Durmuş
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

Surface modification of a Ti6Al4V titanium alloy was made by the plasma nitriding process. Plasma nitriding was performed in a constant gas mixture of 20% H2–80% N2 at temperatures between 700 and 1000° C and process times between 2 and 15 h. Samples nitrided at different treatment times and temperatures were subjected to the dry sliding wear test using the pin-on-disc set up under 80N normal load with rotational speed of counter face disc of 0.8 m/s at room conditions. An artificial neural network (ANN) model of was developed for prediction of wear performance of the plasma nitrided Ti6Al4V alloy. The inputs of the ANN model were processing times and temperatures, diffusion layer thickness, Ti2N thickness, TiN thickness and hardness. The output of the ANN model was wear loss. The model is based on the multilayer backpropagation neural technique. The ANN was trained with a comprehensive dataset collected from experimental conditions and results of authors. The model can be used for the prediction of wear properties of Ti6Al4V alloys nitrided at different parameters. The ANN model demonstrated the best statistical performance with the experimental results.

Kurzfassung

Mittels Plasmanitrieren wurde die Oberfläche einer Ti6Al4V Legierung modifiziert. Der Plasmanitrierprozess wurde unter einem konstanten Gastrom mit 20% H2 und 80 % N2 bei 700 bis 1000° C über zwei bis 15 Stunden ausgeführt. Die bei den verschiedenen Temperaturen und Zeiten nitrierten Proben wurden im Trockenreibversuch im Stift-Scheibe-Versuch bei einer Normalkraft von 80 N und einer Rotationsgeschwindigkeit der Scheibe von 0,8 m/s bei Raumtemperatur untersucht. Um das Verschleißverhalten der plasmanitrierten Ti6Al4V Legierung vorhersagen zu können, wurde ein Artificial Neural Network (ANN) Model entwickelt. Die Eingangsgrößen für das ANN waren die Prozesszeiten und -temperaturen, die Dicke der Diffusionsschichten, der Ti2N und der TiN sowie deren Härte. Die Ausgangsgröße war der Abrieb. Das Model basierte auf einem mehrschichtigen rückwärtspropagierenden ANN. Das ANN wurde mit einem umfangreichen Datenset trainiert, die aus den Ergebnissen der experimentellen Arbeiten der Autoren gewonnen wurden. Das Modell kann nunmehr für die Vorhersage der Verschleißeigenschaften von Ti6Al4V-Legierungen verwendet werden, die mit verschiedenen Parametern nitriert wurden. Das Modell wies die beste statistische Performanz im Vergleich zu den experimentellen Untersuchungen auf.


Fatih Kahraman, born in Kars, Turkey, 1979, graduated from Pamukkale University in 1998 with a degree in Mechanical Engineering. He completed his Master of Science in Mechanical Engineering from the Dokuz Eylül University in 2002. During that time, Mr. Kahraman has published articles. Then, in 2008, he completed his PhD at the Dokuz Eylül University.

Süleyman Karadeniz, born in Isparta, Turkey, 1946, graduated from İstanbul Technical University in 1969 with a degree in Electrical Engineering. He completed his Master of Science in Mechanical Engineering from the Braun­schweig Technical University in 1976. Then, in 1981, he completed his PhD at the Hannover University.

Hülya Durmuş was born in Manisa, Turkey, 1977, and graduated from Pamukkale University in 1998 with a degree in Mechanical Engineering. She completed her Master of Science in Mechanical Engineering at the the Celal Bayar University in 2000. During that time, Mrs. Durmuş has published articles. Then, in 2006, she completed her PhD from Celal Bayar University.


References

1 A.Zhecheva, W.Sha, S.Malinov, A.Long: Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surf. Coat. Technol.200 (2005), pp. 2192220710.1016/j.surfcoat.2004.07.115Search in Google Scholar

2 M.Rahman, M. S. J.Hashmi: Saddle field fast atom beam source: A new low pressure plasma nitriding method for a alloy Ti–6Al–4V, Thin Solid Films515 (2006), pp. 12913410.1016/j.tsf.2005.12.050Search in Google Scholar

3 B. S.Yilbas, C.Karatas, I.Uslan, O.Keles, I. Y.Usta, M.Ahsan: CO2 laser gas assisted nitriding of Ti6Al4V alloy, Appl. Surf. Sci.252 (2006), pp. 8557856410.1016/j.apsusc.2005.11.076Search in Google Scholar

4 M.Nakai, M.Niinomi, T.Akahori, N.Ohtsu, H.Nishimura, H.Toda, H.Fukui, M.Ogawa: Surface hardening of biomedical Ti29Nb13Ta4.6Zr and Ti6Al4V ELI by gas nitriding, Mater. Sci. Eng.: A486 (2008), pp. 19320110.1016/j.msea.2007.08.065Search in Google Scholar

5 A.Alsaran, H.Altun, M.Karakan, A.Celik: Effect of post-oxidizing on tribological and corrosion behaviour of plasma nitrided AISI 5140 steel, Surf. Coat. Technol.176 (2004), pp. 34434810.1016/S0257-8972(03)00770-9Search in Google Scholar

6 B.Edenhofer: Physical and metallurgical aspects of ionitriding-Part 1, Heat. Treat. Met.1 (1974), pp. 2328Search in Google Scholar

7 A.Turk, C.Bindal: Characterization of plasma Nitrided X32CrMoV33 die steel, J. Mater. Process. Technol.24 (2009), pp. 898902Search in Google Scholar

8 K.Danisman, S.Danisman, S.Savas, I.Dalkiran: Modelling of the hysteresis effect of target voltage in reactive magnetron sputtering process by using neural networks, Surf. Coat. Technol.204 (2009), pp. 61061410.1016/j.surfcoat.2009.08.048Search in Google Scholar

9 K.Genel: Use of artificial neural network for prediction of ion nitrided case depth in Fe-Cr alloys, Materials and Design24 (2003), pp. 20320710.1016/S0261-3069(03)00002-5Search in Google Scholar

10 H.Kaçar, E.Özkaya, C.Meriç: The Use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminium alloy, Mater. Design27 (2006), pp. 15615910.1016/j.matdes.2004.09.011Search in Google Scholar

11 K.Velten, R.Reinicke, K.Friederich: Wear volume prediction with artificial neural networks, Tribology International33 (2000), pp. 73173610.1016/S0301-679X(00)00115-8Search in Google Scholar

12 S.Guessasma, G.Montavon, C.Coddet: Modeling of the APS plasma spray process using artificial neural networks: Basis, requirements and an example, Comput. Mater. Sci.29 (2004), pp. 31533310.1016/j.commatsci.2003.10.007Search in Google Scholar

13 K. V. S.Ramana, T.Anita, S.Mandal, S.Kaliappan, H.Shaikh, P.V.Sivaprasad, R.K.Dayal, H.S.Khatak: Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling, Mater. Design.30 (2009), pp. 3770377510.1016/j.matdes.2009.01.039Search in Google Scholar

14 A.Krogh: What are artificial neural networks?, Nature Biotechnology26 (2008), pp. 19519710.1038/nbt1386Search in Google Scholar

15 G.Dini, A.Najafizadeh, S.M.Monir-Vaghefi, A.Ebnonnasir: Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling, Comput. Mater. Sci.45 (2009), pp. 9596510.1016/j.commatsci.2008.12.015Search in Google Scholar

16 J-H.Su, H-J.Li, Q-M.Dong, P.Liu, B-H.Tian: Modeling of rapidly solidified aging process of Cu–Cr–Sn–Zn alloy by an artificial neural network, Comput. Mater. Sci.34 (2005), pp. 15115610.1016/j.commatsci.2004.12.064Search in Google Scholar

17 S.Kenig, A.Ben-David, M.Ömer, A.Sadeh: Control of properties in injection molding by neural networks, Eng. Appl. Artif. Intel.4 (2001), pp. 81982310.1016/S0952-1976(02)00006-4Search in Google Scholar

18 S. M.Bagdatli, E.Ozkaya, H. A.Ozyigit, A.Tekin: Non linear vibrations of stepped beam systems using artificial neural Networks, Structural Engineering and Mechanics33 (2009), pp. 1530Search in Google Scholar

19 Ö.Eyercioğlu, E.Kanca, M.Pala, E.Özbay: Prediction of Martensite and Austenite start temperature of the Fe based shape memory alloys by artificial neural networks, J J. Mater. Process. Technol.200 (2008), pp. 14615210.1016/j.jmatprotec.2007.09.085Search in Google Scholar

20 P.Kuppusami, D.Sundararaman, V. S.Raghunathan: Comparative study of plasma nitriding behaviour of a Type 316 stainless steel and microalloyed steel, Surface Engineering9 (1993), pp. 137141Search in Google Scholar

21 A. M.Hassan, A.Alrashdan, M. T.Hayajneh, A. T.Mayyas: Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network, J. Mater. Process. Technol.209 (2009), pp. 89489910.1016/j.jmatprotec.2008.02.066Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110289/html
Scroll to top button