Home Design of In-Situ Experimentation for the Study of Fuel Cells with X-rays and Neutrons
Article
Licensed
Unlicensed Requires Authentication

Design of In-Situ Experimentation for the Study of Fuel Cells with X-rays and Neutrons

  • Ditty Dixon , Alexander Schröder , Alexander Schökel , Matthias Söhn Darmstadt , Ingo Manke , Nikolay Kardjilov , Tilman Sanders , Volker Loos , Gregor Hoogers , Klaus Wippermann , Detlef Stolten and Christina Roth
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

In situ neutron and X-ray measurements are of essential importance for the rational design of tailor-made catalysts and cell components, in particular when they can be performed with spatial resolution. Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions with spatial resolutions in the order of some tens of micrometers. In the through-plane mode, an overview of the local water and gas distribution in the flow field channels is obtained, while the in-plane mode provides information on spatially and time resolved fluid distribution across the cell, hydration/dehydration processes and water distribution across the walls of flow field channels. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of the local fluid distribution and local performance. This knowledge is essential in order to optimise water management and performance and to establish a homogeneous fluid, current and temperature distribution in order to achieve high performance and durability of DMFCs. While the neutron studies focus on the cell components, additional information about the catalyst performance and stability is obtained by in situ X-ray absorption spectroscopy (XAS), thus nicely complementing the neutron measurements. Particle size and particle composition as well as degradation processes by oxidation, de-alloying, and particle growth can be probed with spatial resolution during operation. However, both for neutron and X-ray investigations dedicated cell and experiment design are crucial for the success of the measurements.

Kurzfassung

In-situ Röntgen- und Neutronenmessungen sind von essentieller Bedeutung für ein rationales Design maßgeschneiderter Katalysatoren und Zellkomponenten, insbesondere wenn sie mit hoher Ortsauflösung durchgeführt werden können. Mittels Neutronenradiographie lässt sich die lokale Flüssigkeitsverteilung in Direktmethanolbrennstoffzellen (DMFC) unter Einsatzbedingungen mit einer Ortsauflösung in der Größenordnung von wenigen Mikrometern ermitteln. Im through-plane Modus kann eine Übersicht über die lokale Wasser- und Gasverteilung in den Gasverteilerstrukturen erhalten werden, während der in-plane Modus Aufschluss über die orts- und zeitaufgelöste Flüssigkeitsverteilung über die gesamte Zelle, Hydratations- und Dehydratationsprozesse sowie die Wasserverteilung über die Wände der Gasverteilerkanäle gibt. Die Kombination von hochauflösender Neutronenradiographie mit segmentierten Zellmessungen ist besonders wertvoll, weil diese die Korrelation der lokalen Flüssigphasenverteilung mit der lokalen Performance ermöglicht. Diese Kenntnisse sind essentiell, um Wassermanagement und Leistung der Zelle zu optimieren und eine homogene Fluss-, Strom- und Temperaturverteilung einzustellen, mittels derer die hohe Performance und Langzeitstabilität in DMFCs gesichert werden können. Während der Schwerpunkt der Neutronenmessungen auf den Zellkomponenten liegt, können zusätzliche Informationen über die Katalysatoraktivität und -stabilität aus in-situ Röntgenabsorptionsmessungen gewonnen werden, welche die Neutronenmessungen sinnvoll ergänzen. Partikelgröße und Partikelzusammensetzung sowie Alterungsphänomene, wie Oxidation, Leaching und Partikelwachstum, können ortsaufgelöst während des Betriebs verfolgt werden. Jedoch sind sowohl für Neutronenmessungen als auch für Röntgenabsorptionsuntersuchungen ein dezidiertes Zell- und Experimentdesign von zentraler Bedeutung für den Erfolg der Messungen.


Ditty Dixon, is since 2008 pursuing his Ph.D in Materials Science at the Technische Universität Darmstadt in Germany in the field of renewable energies. His main expertise is in the field of in-situ characterisation of fuel cell catalysts using X-rays, but he also worked on the synthesis of shape-selected catalysts for fuel cell electrodes. During his master's thesis (IIT Madras), he was involved in the self-assembly of nanoparticles into 2D and 3D structures. He was also engaged in efficient fabric treatment processes using polyelectrolyte supported by Unilever India Ltd.

Alexander Schröder studied energy process engineering at RWTH Aachen University and graduated in 2007. Subsequently, he started to work in the field of direct methanol fuel cells with the Jülich Research Centre as a doctoral candidate. His work focuses on the investigation of the local current and media distribution in direct methanol fuel cells with locally resolved current density measurements and neutron radiography.

Alexander Schökel studied physics at the Christian-Albrechts Universität Kiel and the Technische Universität Darmstadt. He wrote his diploma thesis on „Laser Generated Plasma Jets“ in cooperation with the plasma physics group at the GSI heavy ion accelerator facility in Darmstadt. In 2008 he started his dissertation on the phenomenon of ruthenium dissolution in direct methanol fuel cells. The in-situ investigation of ruthenium dissolution via x-ray absorption spectroscopy in fuel cells under operando conditions is one of his major research fields.

Dr. Matthias Söhn studierte Elektrotechnik in der Vertiefungsrichtung Elektromechanische Konstruktion an der TU Darmstadt. Nach seinem Studium promovierte er am Fachgebiet Regenerative Energien im Jahr 2010. In Zusammenarbeit mit der Arbeitsgruppe von Juniorprof. Ch. Roth arbeitete er an der Synthese und Charakterisierung von Katalysatoren auf Kohlenstoff-Nanoröhrchen zur Verwendung als Elektrodenmaterial in PEM-Brennstoffzellen.

Dr. rer. nat. Ingo Manke promovierte 2002 in Experimentalphysik auf dem Gebiet der Bildgebung mit Rastersondenverfahren. Anschließend arbeitete er bis 2003 am Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration. Er ist Leiter der Fachgruppe „Bildgebende Verfahren“ in der Abteilung „Werkstoffe“ sowie Koordinator des Anwenderzentrums für die Industrie am Helmholtz-Zentrum Berlin für Materialien und Energie. Seine Forschungsfelder betreffen die Entwicklung und Anwendung von bildgebenden Verfahren in der angewandten Forschung.

Dr. Kardjilov studierte Physik an der Universität Sofia in Bulgarien. Er ist Leiter des Neutronen-Tomographie-Instruments Conrad in der Abteilung „Werkstoffe“ am Helmholtz-Zentrum Berlin. Seine aktuellen Forschungsschwerpunkte liegen in der Entwicklung und Anwendung von radiographischen und tomographischen Verfahren mit Neutronen.

Tilman Sanders studied electrical engineering at RWTH Aachen University and graduated in 2006 with a diploma thesis on measurement techniques for spatially resolved current and temperature measurements on direct methanol fuel cells. Since then he is working on measurement systems for batteries and fuel cells and on spatially resolved fuel cell simulation models as a Ph.D student. His main focus is on spatially resolved impedance spectroscopy on fuel cells.

Volker Loos studied Industrial Engineering at Trier University of Applied Sciences, Umwelt-Campus Birkenfeld. He has worked on PEMFC since 2001. In 2003, he joined the group of Greg Hoogers at the Fuel Cell Centre Rhineland-Palatinate. His current work focuses on low-cost DMFC-systems. Other activities are in situ diagnostics, and the design and development of test cells and stacks for a variety of applications.

Gregor Hoogers studied Physics at Technical University of Aachen. He then investigated elementary catalytic surface processes in D.A. King's group at Cambridge, where he received his PhD in 1994. From 1995 until 1999, he was Senior/Principal Scientist at Johnson Matthey Technology Centre, Reading, in charge of fuel cell diagnostics and anode development. In 1999, he was appointed Professor for Hydrogen Technology and Fuel Cells at Trier University of Applied Sciences, Umwelt-Campus Birkenfeld. He also became Visiting Reader at Southampton University in 2000. His Fuel Cell Technology Handbook (CRC Press) was first published in 2003. In 2003, he was awarded by the Academy of Sciences of Rhineland-Palatinate for his work.

Klaus Wippermann studied chemistry at the University of Düsseldorf in Germany and obtained his Ph.D in 1989. He started to work in the field of solid oxide fuel cells (SOFC) with the Jülich Research Center in 1989. His work focused on the investigation of the electrochemical kinetics and mechanisms of the SOFC cathode. In 1999, he switched to the field of direct methanol fuel cells (DMFC). Amongst others, he investigated the structure/properties relationship of DMFC anodes and localized current distribution and aging effects of DMFC and PEFC. He is currently responsible for locally resolved investigations in the Physico-chemical fuel cell laboratory in Jülich.

Prof. Detlef Stolten is the Director of the Institute of Energy Research at the Forschungszentrum Jülich. Prof Stolten received his doctorate from the University of Technology at Clausthal, Germany. He served many years as a Research Scientist in the laboratories of Robert Bosch and Daimler Benz/Dornier. In 1998 he accepted the position of Director of the Institute of Materials and Process Technology at the Research Center Jülich. Two years later he became full Professor for Fuel Cell Technology at the University of Technology (RWTH) at Aachen. Prof. Stolten's research focuses on fuel cells and hydrogen comprising electrochemistry, stack technology and energy process engineering of SOFC, DMFC, high temperature PEM, liquid fuel reforming systems and auxiliary power units. Prof Stolten chaired the Strategic Research Agenda for Hydrogen and Fuel Cells of the EU until 2005. He represents Germany in the Executive Committee of the IEA Annex Advanced Fuel Cells and is co-chairman of IEA's Expert Group on Science for Energy. He is on the advisory board of the journal Fuel Cells and the Chair of the World Hydrogen Energy Conference which was held in May, 2010. Prof Stolten is the Chair of the 2nd International Conference on Energy Process Engineering (2nd ICEPE) to be held in June, 2011.

Christina Roth studied Materials Science at the Technische Universität Darmstadt in Germany and obtained her Ph.D in 2002. In 2004, she was appointed a German junior professor and the head of the Renewable Energies group. Her research focuses on the detailed (in-situ) characterization of materials used in heterogeneous catalysis and electrocatalysis. Recent projects comprise the synthesis of alternative catalyst supports, the advanced design of 3D electrode architectures and the development of novel in-situ techniques.


References

1 C.Roth, N.Martz, H.Fuess: Phys. Chem. Chem. Phys.3 (2001), S. 315.Search in Google Scholar

2 A. S.Arico, P.Creti, H.Kim, R.Mantegna, N.Giordano, V.Antonucci: J. Electrochem. Soc.143 (1996), S. 3950.10.1149/1.1837321Search in Google Scholar

3 J.Antolini: Mater. Chem. Phys.78 (2003), S. 563.10.1016/S0254-0584(02)00389-9Search in Google Scholar

4 V.Radmilovic, H. A.Gasteiger, P. N.Ross: J. Catal.154 (1995), S. 98.10.1006/jcat.1995.1151Search in Google Scholar

5 P. L.Hansen, J. B.Wagner, S.Helveg, J. R.Rostrup-Nielsen, B. S.Clausen, H.Topsoe: Science295 (2002), S. 2053.10.1126/science.1069325Search in Google Scholar PubMed

6 R. J.Bellows, M. Y.Lin, M.Arif, A. K.Thompson, D.Jacobson: Journal of The Electrochemical Society146 (1999), S. 10991103.10.1149/1.1391727Search in Google Scholar

7 D.Kramer, E.Lehmann, G.Frei, P.Vontobel, A.Wokaun, G. G.Scherer: Nuclear Instruments and Methods in Physics Research A542 (2005), S. 5260.10.1016/j.nima.2005.01.011Search in Google Scholar

8 N.Pekula, K.Heller, P.A.Chuang, A.Turhan, M.M.Mench, J.S.Brenizer, K.Ünlü: Nuclear Instruments and Methods in Physics Research A542 (2005), S. 134141.10.1016/j.nima.2005.01.090Search in Google Scholar

9 I.Manke, C.Hartnig, M.Grünerbel, J.Kaczerowski, W.Lehnert, N.Kardjilov, A.Hilger, J.Banhart, W.Treimer, M.Strobl: Applied Physics Letters90 (2007), 18410110.1063/1.2734171Search in Google Scholar

10 C.Hartnig, I.Manke, N.Kardjilov, A.Hilger, M.Grünerbel, J.Kaczerowski, J.Banhart, W.Lehnert: Journal of Power Sources176 (2008), S. 452459.10.1016/j.jpowsour.2007.08.058Search in Google Scholar

11 I.Manke, C.Hartnig, N.Kardjilov, M.Messerschmidt, A.Hilger, M.Strobl, W.Lehnert, J.Banhart: Applied Physics Letters92 (2008), S. 244101.10.1063/1.2946664Search in Google Scholar

12 M. A.Hickner, N. P.Siegel, K. S.Chen, D. S.Hussey, D. L.Jacobson, M.Arif: Journal of The Electrochemical Society155 (2008), S. B427-B434.Search in Google Scholar

13 P.Boillat, D.Kramer, B. C.Seyfang, G.Frei, E.Lehmann, G. G.Scherer, A.Wokaun, Y.Ichikawa, Y.Tasaki, K.Shinohara: Electrochemistry Communications10 (2008), S. 546550.10.1016/j.elecom.2008.01.018Search in Google Scholar

14 A.Schröder, K.Wippermann, J.Mergel, W.Lehnert, D.Stolten, T.Sanders, T.Baumhöfer, D. U.Sauer, I.Manke, N.Kardjilov, A.Hilger, J.Schloesser, J.Banhart, C.Hartnig: Electrochemistry Communications11 (2009), S. 16061609.10.1016/j.elecom.2009.06.008Search in Google Scholar

15 M. S.Nashner, A. I.Frenkel, D. L.Adler, J. R.Shapley, R. G.Nuzzo: J. Am. Chem. Soc.119 (1997), S. 7760.10.1021/ja971039fSearch in Google Scholar

16 M. S.Nashner, A. I.Frenkel, D.Somerville, C. W.Hills, J. R.Shapley, R. G.Nuzzo: J. Am. Chem. Soc.120 (1998), S. 8093.10.1021/ja980638zSearch in Google Scholar

17 C.Roth, N.Benker, M.Mazurek, F.Scheiba, H.Fuess: Appl. Catal. A319 (2007), S. 8190.10.1016/j.apcata.2006.11.018Search in Google Scholar

18 W. E.O’Grady, P. L.Hagans, K. I.Pandya, D. L.Maricle: Langmuir17 (2001), S. 3047.10.1021/la0017532Search in Google Scholar

19 S.Maniguet, R. J.Mathew, A. E.Russell: J. Phys. Chem. B104 (2000), S. 19982000.10.1021/jp992947xSearch in Google Scholar

20 F. J.Scott, C.Roth, D. E.Ramaker: J. Phys. Chem. C.111 (2007), S. 11403.Search in Google Scholar

21 C.Roth, N.Benker, Th.Buhrmester, M.Mazurek, M.Loster, H.Fuess, D. C.Koningsberger, D. E.Ramaker: J. Am. Chem. Soc.127 (2005), S. 14607.Search in Google Scholar

22 R.Viswanathan, G.Hou, R.Liu, S. R.Bare, F.Modica, G.Mickelson, C. U.Segre, N.Leyarovska, E. S.Smotkin: J. Phys. Chem. B106 (2002), S. 3458.10.1021/jp0139787Search in Google Scholar

23 C.Roth, N.Martz, T.Buhrmester, H.Fuess: Phys. Chem. Chem. Phys.4 (2002), S. 3555.10.1039/b204293bSearch in Google Scholar

24 C.Roth, N.Martz, M.Mazurek, F.Scheiba, H.Fuess: Adv. Eng. Mat.7 (2005), S. 952.10.1002/adem.200500122Search in Google Scholar

25 J. M.Ziegelbauer, V. S.Murthi, C.O’Laoire, A. F.Guila, S.Mukerjee: Electrochim. Acta53 (2008), S. 5587.10.1016/j.electacta.2008.02.091Search in Google Scholar

26 S.Mukerjee, R. C.Urian, S. J.Lee, E. A.Ticianelli, J.McBreen: J. Electrochem. Soc.151 (2004), S. A1094.10.1149/1.1759363Search in Google Scholar

27 A. E.Russell, A.Rose: Chem. Rev.104 (2004), S. 4613.10.1021/cr020708rSearch in Google Scholar

28 R. J. K.Wiltshire, C. R.King, A.Rose, P. P.Wells, M. P.Hogarth, D.Thompsett, A. E.Russell: Electrochim. Acta50 (2005), S. 5208.10.1016/j.electacta.2005.05.038Search in Google Scholar

29 S.Stoupin, H.Rivera, Z. R.Li, C. U.Segre, C.Korzeniewski, D. J.Casadonte, H.Inoue, E. S.Smotkin: Phys. Chem. Chem. Phys.10, (2008), S. 6430.10.1039/b806345cSearch in Google Scholar

30 S.Stoupin, E. H.Chung, S.Chattopadhyay, C. U.Segre, E. S.Smotkin: J. Phys. Chem. B110 (2006), S. 9932.10.1021/jp057047xSearch in Google Scholar

31 R.Viswanathan, R.Liu, E. S.Smotkin: Rev. Sci. Instr., 73 (2002), S. 2124.10.1063/1.1472469Search in Google Scholar

32 V.Croze, F.Ettingshausen, J.Melke, M.Soehn, D.Stuermer, C.Roth: J. Appl. Electrochem.40 (2010), S. 877883.10.1007/s10800-009-9919-xSearch in Google Scholar

33 J.Melke, A.Schoekel, D.Dixon, C.Cremers, D. E.Ramaker, C.Roth: J. Phys. Chem. C114 (2010), S. 59145925.10.1021/jp909342wSearch in Google Scholar

34 R.Mosdale1, G.Gebel, M.Pineri: J. Membr. Sci.118 (2005), S. 269277.10.1016/0376-7388(96)00110-XSearch in Google Scholar

35 A.Turhan, S.Kim, M.Hatzell, M. M.Mench: Electrochim. Acta55 (2010), S. 27342745.10.1016/j.electacta.2009.11.095Search in Google Scholar

36 A.Schröder, K.Wippermann, W.Lehnert, D.Stolten, T.Sanders, T.Baumhöfer, N.Kardjilov, A.Hilger, J.Banhart, I.Manke: Journal of Power Sources (2010), doi:10.1016/j.jpowsour.2010.02.057, in press10.1016/j.jpowsour.2010.02.057Search in Google Scholar

37 B.Ravel, M.Newville: J. Synchrotron Rad.12 (2005) 4, S. 537541.10.1107/S0909049505012719Search in Google Scholar PubMed

38 B.Ravel: J. Synchrotron Rad.8 (2001), S. 314316.10.1107/S090904950001493XSearch in Google Scholar PubMed

39 N.Kardjilov, A.Hilger, I.Manke, M.Strobl, W.Treimer, J.Banhart: Nuclear Instruments and Methods in Physics Research A542 (2005), S. 1621.10.1016/j.nima.2005.01.005Search in Google Scholar

40 F.Ettingshausen, J.Kleemann, M.Michel, M.Quintus, H.Fuess, C.Roth: J. Power Sources194 (2009), S. 899907.10.1016/j.jpowsour.2009.06.003Search in Google Scholar

41 F.Ettingshausen, J.Kleemann, A.Marcu, G.Toth, H.Fuess, C.Roth: Fuel Cells (2010) submitted.Search in Google Scholar

42 N.Akhtar, A.Qureshi, J.Scholta, C.Hartnig, M.Messerschmidt, W.Lehnert: International Journal of Hydrogen Energy34 (2009), S. 31043111.10.1016/j.ijhydene.2009.01.022Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2010-10-01

© 2010, Carl Hanser Verlag, München

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110180/html
Scroll to top button