Home Life Sciences Electrodialysis of oxalic acid: batch process modeling
Article
Licensed
Unlicensed Requires Authentication

Electrodialysis of oxalic acid: batch process modeling

  • Jiří Kaláb EMAIL logo and Zdeněk Palatý
Published/Copyright: September 13, 2012
Become an author with De Gruyter Brill

Abstract

Batch electrodialysis of aqueous solutions of oxalic acid was investigated using a laboratory electrodialyzer ED-Z mini equipped with ion-exchange membranes Ralex-AMH-PES and Ralex-CMHPES (Mega, Stráž pod Ralskem, Czech Republic). The paper presents a mathematical model which enables to predict changes in the oxalic acid concentrations in the diluate and concentrate compartments during the electrodialysis process under various conditions specified by combinations of the initial acid concentrations with current densities. The calculation proved a good agreement between the developed model and the experimental results.

[1] Buck, R. P. (1984). Kinetics of bulk and interfacial ionic motion: microscopic bases and limits of the Nernst-Planck equation applied to membrane systems. Journal of Membrane Science, 17, 1–62. DOI: 10.1016/s0376-7388(00)81386-1. http://dx.doi.org/10.1016/S0376-7388(00)81386-110.1016/S0376-7388(00)81386-1Search in Google Scholar

[2] Cwirko, E. H., & Carbonell, R. G. (1992). Ionic equilibria in ion-exchange membranes: a comparison of pore model predictions with experimental results. Journal of Membrane Science, 67, 211–226. DOI: 10.1016/0376-7388(92)80026-g. http://dx.doi.org/10.1016/0376-7388(92)80026-G10.1016/0376-7388(92)80026-GSearch in Google Scholar

[3] Dube, S. K., Vasudevan, P., & Khandelwal, B. (1982). Oxalic acid manufacture. Journal of Chemical Technology and Biotechnology, 32, 909–919. http://dx.doi.org/10.1002/jctb.503032072910.1002/jctb.5030320729Search in Google Scholar

[4] Kirk, R. E., & Othmer, D. F. (1984). Encyclopaedia of chemical technology (3rd ed.). New York, NY, USA: Wiley. Search in Google Scholar

[5] Kraaijeveld, G., Sumberova, V., Kuindersma, S., & Wesselingh, H. (1995). Modelling electrodialysis using the Maxwell-Stefan description. The Chemical Engineering Journal and the Biochemical Engineering Journal, 57, 163–176. DOI: 10.1016/0923-0467(94)02940-7. http://dx.doi.org/10.1016/0923-0467(94)02940-710.1016/0923-0467(94)02940-7Search in Google Scholar

[6] Michaeli, L., Kedem, O. (1961). Description of the transport of solvent and ions through membranes in terms of differential coefficients. Part I. Phenomenological characterization of flows. Transactions of the Faraday Society, 57, 1185–1190. DOI: 10.1039/tf9615701185. http://dx.doi.org/10.1039/tf961570118510.1039/TF9615701185Search in Google Scholar

[7] Nikonenko, V., Zabolotsky, V., Larchet, C., Auclair, B., & Pourcelly, G. (2002). Mathematical description of ion transport in membrane systems. Desalination, 147, 369–374. DOI: 10.1016/s0011-9164(02)00611-2. http://dx.doi.org/10.1016/S0011-9164(02)00611-210.1016/S0011-9164(02)00611-2Search in Google Scholar

[8] Perry, R. H., & Green, D. W. (1999). Perry’s Chemical engineers’ handbook. New York, NY, USA: McGraw-Hill. Search in Google Scholar

[9] Strathmann, H. (2004). Ion exchange membrane separation processes (Membrane science and technology series, Vol. 9). Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[10] Tanaka, Y. (2007). Ion exchange membranes: Fundamentals and applications (Membrane science and technology series, Vol. 12). Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

Published Online: 2012-9-13
Published in Print: 2012-12-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0232-5/html
Scroll to top button