Home Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films
Article
Licensed
Unlicensed Requires Authentication

Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films

  • Loredana-Mihaela Dobre EMAIL logo , Anicuţa Stoica-Guzun , Marta Stroescu , Iuliana Jipa , Tǎnase Dobre , Mariana Ferdeş and Ştefana Ciumpiliac
Published/Copyright: November 23, 2011
Become an author with De Gruyter Brill

Abstract

Antimicrobial packaging protects the product from the external environment and microbial contamination, conferring numerous advantages on human health. Interest in biopolymers as packaging materials has considerably increased recently. Bacterial cellulose is an interesting biomaterial produced as nanofibrils by Acetobacter xylinium and is a promising candidate due to its remarkable properties. New composite materials with antimicrobial properties were developed in this work, containing poly(vinyl alcohol) (PVA) as polymer matrix and ground bacterial cellulose (BC) as reinforcing fibres. Sorbic acid was used as an antimicrobial agent because it is a preservative recognised in the food industry. The materials obtained were studied using Fourier-transformed infrared spectroscopy (FTIR). The swelling rate of the composites was also measured. Release experiments of sorbic acid from the composite films into water were performed and the mass transfer phenomena were investigated using Fick’s law of diffusion. The antimicrobial effect was tested against Escherichia coli K12-MG1655. The results obtained indicated that the new biocomposite films could be promising antimicrobial food packaging materials.

[1] Buonocore, G. G., Del Nobile, M. A., Panizza, A., Bove, S., Battaglia, G., & Nicolais, L. (2003). Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications. Journal of Food Science, 68, 1365–1370. DOI: 10.1111/j.1365-2621.2003.tb09651.x. http://dx.doi.org/10.1111/j.1365-2621.2003.tb09651.x10.1111/j.1365-2621.2003.tb09651.xSearch in Google Scholar

[2] Choi, J. H., Choi, W. Y., Cha, D. S., Chinnan, M. J., Park, H. J., Lee, D. S., & Park, J. M. (2005). Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT-Food Science and Technology, 38, 417–423. DOI: 10.1016/j.lwt.2004.07.004. http://dx.doi.org/10.1016/j.lwt.2004.07.00410.1016/j.lwt.2004.07.004Search in Google Scholar

[3] Crank, J. (1975). The mathematics of diffusion. Bristol, UK: Oxford University Press. Search in Google Scholar

[4] Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M., Jr. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8, 1–12. DOI: 10.1021/bm060620d. http://dx.doi.org/10.1021/bm060620d10.1021/bm060620dSearch in Google Scholar

[5] Del Nobile, M. A., Conte, A., Incoronato, A. L., & Panza, O. (2008). Antimicrobial efficacy and release kinetics of thymol from zein films. Journal of Food Engineering, 89, 57–63. DOI: 10.1016/j.jfoodeng.2008.04.004. http://dx.doi.org/10.1016/j.jfoodeng.2008.04.00410.1016/j.jfoodeng.2008.04.004Search in Google Scholar

[6] Flores, S., Haedo, A. S., Campos, C., & Gerschenson, L. (2007). Antimicrobial performance of potassium sorbate supported in tapioca starch edible films. European Food Research and Technology, 225, 375–384. DOI: 10.1007/s00217-006-0427-5. http://dx.doi.org/10.1007/s00217-006-0427-510.1007/s00217-006-0427-5Search in Google Scholar

[7] Gemili, S., Yemenicioğlu, A., & Altınkaya, S. (2009). Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. Journal of Food Engineering, 90, 453–462. DOI: 10.1016/j.jfoodeng.2008.07.014. http://dx.doi.org/10.1016/j.jfoodeng.2008.07.01410.1016/j.jfoodeng.2008.07.014Search in Google Scholar

[8] Han, J. H. (2003). Antimicrobial food packaging. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 50–70). Cambridge, UK: Woodhead Publishing Ltd. http://dx.doi.org/10.1533/9781855737020.1.5010.1533/9781855737020.1.50Search in Google Scholar

[9] Han, J. H., & Floros, J. D. (2007). Active packaging: A nonthermal process. In G. Tewari, & V. K. Juneja (Eds.), Advances in thermal and non-thermal food preservation (pp. 167–183). Ames, IA, USA: Blackwell Publishing. Search in Google Scholar

[10] Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose-a masterpiece of nature’s arts. Journal of Materials Science, 35, 261–270. http://dx.doi.org/10.1023/A:100477522914910.1023/A:1004775229149Search in Google Scholar

[11] Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101–106. DOI: 10.1016/S0141-3910(97)00197-3. http://dx.doi.org/10.1016/S0141-3910(97)00197-310.1016/S0141-3910(97)00197-3Search in Google Scholar

[12] Kačuráková, M., Smith, A. C., Gidley, M. J., & Wilson, R. H. (2002). Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydrate Research, 337, 1145–1153. DOI: 10.1016/S0008-6215(02)00102-7. http://dx.doi.org/10.1016/S0008-6215(02)00102-710.1016/S0008-6215(02)00102-7Search in Google Scholar

[13] Markin, V. S., Iordanskii, A. L., & Kosenko, R. Yu. (1998). Benzoic acid release from strongly swelling PVA films. Pharmaceutical Chemistry Journal, 3, 54–56. DOI: 10.1007/BF02539231. 10.1007/BF02539231Search in Google Scholar

[14] Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10, 222–227. DOI: 10.1016/j.ifset.2008.11.010. http://dx.doi.org/10.1016/j.ifset.2008.11.01010.1016/j.ifset.2008.11.010Search in Google Scholar

[15] Mastromatteo, M., Lecce, L., De Vietro, N., Favia, P., & Del Nobile, M. A. (2011). Plasma deposition processes from acrylic/methane on natural fibres to control the kinetic release of lysozyme from PVOH monolayer film. Journal of Food Engineering, 104, 373–379. DOI: 10.1016/j.jfoodeng.2010.12.032. http://dx.doi.org/10.1016/j.jfoodeng.2010.12.03210.1016/j.jfoodeng.2010.12.032Search in Google Scholar

[16] Min, S., & Krochta, J. M. (2007). Edible coatings containing bioactive antimicrobial agents. In J. H. Han (Ed.), Packaging for nonthermal processing of food (pp. 29–52). Ames, IA, USA: Blackwell Publishing and the Institute of Food Technologists. http://dx.doi.org/10.1002/9780470277720.ch310.1002/9780470277720.ch3Search in Google Scholar

[17] Petersen, K., Nielsen, P. V., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology, 10, 52–68. DOI: 10.1016/S0924-2244(99)00019-9. http://dx.doi.org/10.1016/S0924-2244(99)00019-910.1016/S0924-2244(99)00019-9Search in Google Scholar

[18] Redl, A., Gontard, N., & Guilbert, S. (1996). Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. Journal of Food Science, 61, 116–120. DOI:10.1111/j.1365-2621.1996.tb14739.x. http://dx.doi.org/10.1111/j.1365-2621.1996.tb14739.x10.1111/j.1365-2621.1996.tb14739.xSearch in Google Scholar

[19] Rothstein, S. N., Federspiel, W. J., & Little, S. R. (2009). A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials, 30, 1657–1664. DOI: 10.1016/j.biomaterials.2008.12.002. http://dx.doi.org/10.1016/j.biomaterials.2008.12.00210.1016/j.biomaterials.2008.12.002Search in Google Scholar PubMed PubMed Central

[20] Souza, M. P., Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., Porto, A. L. F., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2010). Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes. Chemical Papers, 64, 475–481. DOI: 10.2478/s11696-010-0017-7. http://dx.doi.org/10.2478/s11696-010-0017-710.2478/s11696-010-0017-7Search in Google Scholar

[21] Uz, M., & Altınkaya, S. A. (2011). Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT — Food Science and Technology. Article in press. DOI: 10.1016/j.lwt.2011.05.003. 10.1016/j.lwt.2011.05.003Search in Google Scholar

[22] Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5, 187–200. DOI: 10.1023/A:1009272904582. http://dx.doi.org/10.1023/A:100927290458210.1023/A:1009272904582Search in Google Scholar

[23] Yoshida, C. M. P., Bastos, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT — Food Science and Technology, 43, 584–589. DOI: 10.1016/j.lwt.2009.10.005. http://dx.doi.org/10.1016/j.lwt.2009.10.00510.1016/j.lwt.2009.10.005Search in Google Scholar

[24] Zhu, G.-Q., Gao, Q.-C., Li, Z.-H., Wang, F.-G., & Zhang, H. (2010). Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer. Chemical Papers, 64, 776–782. DOI:10.2478/s11696-010-0069-8. http://dx.doi.org/10.2478/s11696-010-0069-810.2478/s11696-010-0069-8Search in Google Scholar

Published Online: 2011-11-23
Published in Print: 2012-2-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0086-2/html
Scroll to top button