Home Steam-reforming of ethanol for hydrogen production
Article
Licensed
Unlicensed Requires Authentication

Steam-reforming of ethanol for hydrogen production

  • Ahmed Bshish EMAIL logo , Zahira Yaakob , Binitha Narayanan , Resmi Ramakrishnan and Ali Ebshish
Published/Copyright: March 16, 2011
Become an author with De Gruyter Brill

Abstract

Production of hydrogen by steam-reforming of ethanol has been performed using different catalytic systems. The present review focuses on various catalyst systems used for this purpose. The activity of catalysts depends on several factors such as the nature of the active metal catalyst and the catalyst support, the precursor used, the method adopted for catalyst preparation, and the presence of promoters as well as reaction conditions like the water-to-ethanol molar ratio, temperature, and space velocity. Among the active metals used to date for hydrogen production from ethanol, promoted-Ni is found to be a suitable choice in terms of the activity of the resulting catalyst. Cu is the most commonly used promoter with nickel-based catalysts to overcome the inactivity of nickel in the water-gas shift reaction. γ-Al2O3 support has been preferred by many researchers because of its ability to withstand reaction conditions. However, γ-Al2O3, being acidic, possesses the disadvantage of favouring ethanol dehydration to ethylene which is considered to be a source of carbon deposit found on the catalyst. To overcome this difficulty and to obtain the long-term catalyst stability, basic oxide supports such as CeO2, MgO, La2O3, etc. are mixed with alumina which neutralises the acidic sites. Most of the catalysts which can provide higher ethanol conversion and hydrogen selectivity were prepared by a combination of impregnation method and sol-gel method. High temperature and high water-to-ethanol molar ratio are two important factors in increasing the ethanol conversion and hydrogen selectivity, whereas an increase in pressure can adversely affect hydrogen production.

[1] Aboudheir, A., Akande, A., Idem, R., & Dalai, A. (2006). Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 31, 752–761. DOI: 10.1016/j.ijhydene.2005.06.020. http://dx.doi.org/10.1016/j.ijhydene.2005.06.02010.1016/j.ijhydene.2005.06.020Search in Google Scholar

[2] Akande, A. J., Idem, R. O., & Dalai, A. K. (2005). Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. Applied Catalysis A: General, 287, 159–175. DOI: 10.1016/j.apcata.2005.03.046. http://dx.doi.org/10.1016/j.apcata.2005.03.04610.1016/j.apcata.2005.03.046Search in Google Scholar

[3] Akpan, E., Akande, A., Aboudheir, A., Ibrahim, H., & Idem, R. (2007). Experimental, kinetic and 2-D reactor modeling for simulation of the production of hydrogen by the catalytic reforming of concentrated crude ethanol (CRCCE) over a Ni-based commercial catalyst in a packed-bed tubular reactor. Chemical Engineering Science, 62, 3112–3126. DOI: 10.1016/j.ces.2007.03.006. http://dx.doi.org/10.1016/j.ces.2007.03.00610.1016/j.ces.2007.03.006Search in Google Scholar

[4] Alberton, A. L., Souza, M. M. V. M., & Schmal, M. (2007). Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catalysis Today, 123, 257–264. DOI: 10.1016/j.cattod.2007.01.062. http://dx.doi.org/10.1016/j.cattod.2007.01.06210.1016/j.cattod.2007.01.062Search in Google Scholar

[5] Alstrup, I., Tavares, M. T., Bernardo, C. A., Sørensen, O., & Rostrup-Nielsen, J. R. (1998). Carbon formation on nickel and nickel-copper alloy catalysts. Materials and Corrosion, 49, 367–372. DOI: 10.1002/(SICI)1521-4176(199805). http://dx.doi.org/10.1002/(SICI)1521-4176(199805)49:5<367::AID-MACO367>3.0.CO;2-M10.1002/(SICI)1521-4176(199805)49:5<367::AID-MACO367>3.0.CO;2-MSearch in Google Scholar

[6] Aupretre, F., Descorme, C., & Duprez, D. (2004). Hydrogen production for fuel cells from the catalytic ethanol steam reforming. Topics in Catalysis, 30–31, 487–492. DOI: 10.1023/B:TOCA.0000029842.71967.fc. http://dx.doi.org/10.1023/B:TOCA.0000029842.71967.fc10.1023/B:TOCA.0000029842.71967.fcSearch in Google Scholar

[7] Auprêtre, F., Descorme, C., & Duprez, D. (2002). Bio-ethanol catalytic steam reforming over supported metal catalysts. Catalysis Communications, 3, 263–267. DOI: 10.1016/S1566-7367(02)00118-8. http://dx.doi.org/10.1016/S1566-7367(02)00118-810.1016/S1566-7367(02)00118-8Search in Google Scholar

[8] Aupretre, F., Descorme, C., & Duprez, D. (2001). Le vaporeformage catalytique: application a la production embarquee d’hydrogene a partir d’hydrocarbures ou d’alcools. Annales de Chimie Science des Matériaux, 26, 93–106. DOI: 10.1016/S0151-9107(01)80073-8. http://dx.doi.org/10.1016/S0151-9107(01)80073-810.1016/S0151-9107(01)80073-8Search in Google Scholar

[9] Aupretre, F., Descorme, C., Duprez, D., Casanave, D., & Uzio, D. (2005). Ethanol steam reforming over MgxNi1−x Al2O3 spinel oxide-supported Rh catalysts. Journal of Catalysis, 233, 464–477. DOI: 10.1016/j.jcat.2005.05.007. http://dx.doi.org/10.1016/j.jcat.2005.05.00710.1016/j.jcat.2005.05.007Search in Google Scholar

[10] Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., & Ticianelli, E. A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, 134, 27–32. DOI: 10.1016/j.jpowsour.2004.01.052. http://dx.doi.org/10.1016/j.jpowsour.2004.01.05210.1016/j.jpowsour.2004.01.052Search in Google Scholar

[11] Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., & Ticianelli, E. A. (2003). Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. Journal of Power Sources, 124, 99–103. DOI: 10.1016/S0378-7753(03)00599-8. http://dx.doi.org/10.1016/S0378-7753(03)00599-810.1016/S0378-7753(03)00599-8Search in Google Scholar

[12] Benito, M., Padilla, R., Rodríguez, L., Sanz, J. L., & Daza, L. (2007). Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure. Journal of Power Sources, 169, 167–176. DOI: 10.1016/j. jpowsour.2007.01.047. http://dx.doi.org/10.1016/j.jpowsour.2007.01.04710.1016/j.jpowsour.2007.01.047Search in Google Scholar

[13] Benito, M., Sanz, J. L., Isabel, R., Padilla, R., Arjona, R., & Daza, L. (2005). Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151, 11–17. DOI: 10.1016/j.jpowsour.2005.02.046. http://dx.doi.org/10.1016/j.jpowsour.2005.02.04610.1016/j.jpowsour.2005.02.046Search in Google Scholar

[14] Bergamaschi, V. S., & Carvalho, F. M. S. (2008). Hydrogen production by ethanol steam reforming over Cu and Ni catalysts supported on ZrO2 and Al2O3 microspheres. Materials Science Forum, 591–593, 734–739. DOI: 10.4028/www.scientific.net/MSF.591-593.734. http://dx.doi.org/10.4028/www.scientific.net/MSF.591-593.73410.4028/www.scientific.net/MSF.591-593.734Search in Google Scholar

[15] Biswas, P., & Kunzru, D. (2008). Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chemical Engineering Journal, 136, 41–49. DOI: 10.1016/j.cej.2007.03.057. http://dx.doi.org/10.1016/j.cej.2007.03.05710.1016/j.cej.2007.03.057Search in Google Scholar

[16] Breen, J. P., Burch, R., & Coleman, H. M. (2002). Metalcatalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B: Environmental, 39, 65–74. DOI: 10.1016/S0926-3373(02)00075-9. http://dx.doi.org/10.1016/S0926-3373(02)00075-910.1016/S0926-3373(02)00075-9Search in Google Scholar

[17] Casanovas, A., Roig, M., de Leitenburg, C., Trovarelli, A., & Llorca, J. (2010). Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr and Na. International Journal of Hydrogen Energy, 35, 7690–7698. DOI: 10.1016/j.ijhydene.2010.05.099. http://dx.doi.org/10.1016/j.ijhydene.2010.05.09910.1016/j.ijhydene.2010.05.099Search in Google Scholar

[18] Cavallaro, S. (2000). Ethanol steam reforming on Rh/Al2O3 catalysts. Energy Fuels, 14, 1195–1199. DOI: 10.1021/ef0000779. http://dx.doi.org/10.1021/ef000077910.1021/ef0000779Search in Google Scholar

[19] Cavallaro, S., Chiodo, V., Freni, S., Mondello, N., & Frusteri, F. (2003). Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC. Applied Catalysis A: General, 249, 119–128. DOI: 10.1016/S0926-860X(03)00189-3. http://dx.doi.org/10.1016/S0926-860X(03)00189-310.1016/S0926-860X(03)00189-3Search in Google Scholar

[20] Cavallaro, S., & Freni, S. (1996). Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation. International Journal of Hydrogen Energy, 21, 465–469. DOI: 10.1016/0360-3199(95)00107-7. http://dx.doi.org/10.1016/0360-3199(95)00107-710.1016/0360-3199(95)00107-7Search in Google Scholar

[21] Chang, F.-W., Yang, H.-C., Roselin, L. S., & Kuo, W.-Y. (2006). Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 304, 30–39. DOI: 10.1016/j.apcata.2006.02.017. http://dx.doi.org/10.1016/j.apcata.2006.02.01710.1016/j.apcata.2006.02.017Search in Google Scholar

[22] Chen, S. Q., & Liu, Y. (2009). LaFeyNi1−y O3 supported nickel catalysts used for steam reforming of ethanol. International Journal of Hydrogen Energy, 34, 4735–4746. DOI: 10.1016/j.ijhydene.2009.03.048. http://dx.doi.org/10.1016/j.ijhydene.2009.03.04810.1016/j.ijhydene.2009.03.048Search in Google Scholar

[23] Ciambelli, P., Palma, V., & Ruggiero, A. (2010). Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 96, 190–197. DOI: 10.1016/j.apcatb.2010.02.019. http://dx.doi.org/10.1016/j.apcatb.2010.02.01910.1016/j.apcatb.2010.02.019Search in Google Scholar

[24] Coleman, L. J. I., Epling, W., Hudgins, R. R., & Croiset, E. (2009). Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A: General, 363, 52–63. DOI: 10.1016/j.apcata.2009.04.032. http://dx.doi.org/10.1016/j.apcata.2009.04.03210.1016/j.apcata.2009.04.032Search in Google Scholar

[25] Comas, J., Laborde, M., & Amadeo, N. (2004a). Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent. Journal of Power Sources, 138, 61–67. DOI: 10.1016/j.jpowsour.2004.05.059. http://dx.doi.org/10.1016/j.jpowsour.2004.05.05910.1016/j.jpowsour.2004.05.059Search in Google Scholar

[26] Comas, J., Mariño, F., Laborde, M., & Amadeo, N. (2004b). Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal, 98, 61–68. DOI: 10.1016/S1385-8947(03)00186-4. http://dx.doi.org/10.1016/S1385-8947(03)00186-410.1016/S1385-8947(03)00186-4Search in Google Scholar

[27] de la Peña O’shea, V. A., Homs, N., Pereira, E. B., Nafria, R., & Ramírez de la Piscina, P. (2007). X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catalysis Today, 126, 148–152. DOI: 10.1016/j.cattod.2006.10.002. http://dx.doi.org/10.1016/j.cattod.2006.10.00210.1016/j.cattod.2006.10.002Search in Google Scholar

[28] de Lima, S.M., da Silva, A.M., da Costa, L. O. O., Graham, U. M., Jacobs, G., Davis, B. H., Mattos, L. V., & Noronha, F. B. (2009). Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst. Journal of Catalysis, 268, 268–281. DOI: 10.1016/j.jcat.2009.09.025. http://dx.doi.org/10.1016/j.jcat.2009.09.02510.1016/j.jcat.2009.09.025Search in Google Scholar

[29] de Lima, S. M., Silva, A. M., da Cruz, I. O., Jacobs, G., Davis, B. H., Mattos, L. V., & Noronha, F. B. (2008). H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catalysis Today, 138, 162–168. DOI: 10.1016/j.cattod.2008.06.014. http://dx.doi.org/10.1016/j.cattod.2008.06.01410.1016/j.cattod.2008.06.014Search in Google Scholar

[30] Denis, A., Grzegorczyk, W., Gac, W., & Machocki, A. (2008). Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications. Catalysis Today, 137, 453–459. DOI: 10.1016/j.cattod.2008.03.006. http://dx.doi.org/10.1016/j.cattod.2008.03.00610.1016/j.cattod.2008.03.006Search in Google Scholar

[31] Descorme, C., Madier, Y., Duprez, D., & Birchem, T. (2000). Surface mobility of oxygen species on mixed-oxides supported metals. In A. Corma, F. V. Melo, S. Mendioroz, & J. L. G. Fierro (Eds.), Studies in Surface Science and Catalysis (Vol. 130, pp. 347–352). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S0167-2991(00)80981-7. 10.1016/S0167-2991(00)80981-7Search in Google Scholar

[32] Diagne, C., Idriss, H., & Kiennemann, A. (2002). Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications, 3, 565–571. DOI: 10.1016/S1566-7367(02)00226-1. http://dx.doi.org/10.1016/S1566-7367(02)00226-110.1016/S1566-7367(02)00226-1Search in Google Scholar

[33] Erdöhelyi, A., Raskó, J., Kecskés, T., Tóth, M., Dömök, M., & Baán, K. (2006). Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today, 116, 367–376. DOI: 10.1016/j.cattod.2006.05.073. http://dx.doi.org/10.1016/j.cattod.2006.05.07310.1016/j.cattod.2006.05.073Search in Google Scholar

[34] Fatsikostas, A. N., Kondarides, D. I., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 75, 145–155. DOI: 10.1016/S0920-5861(02)00057-3. http://dx.doi.org/10.1016/S0920-5861(02)00057-310.1016/S0920-5861(02)00057-3Search in Google Scholar

[35] Fatsikostas, A. N., & Verykios, X. E. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 225, 439–452. DOI: 10.1016/j.jcat.2004.04.034. http://dx.doi.org/10.1016/j.jcat.2004.04.03410.1016/j.jcat.2004.04.034Search in Google Scholar

[36] Fierro, V., Akdim, O., & Mirodatos, C. (2003). On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts. Green Chemistry, 5, 20–24. http://dx.doi.org/10.1039/b208201m10.1039/b208201mSearch in Google Scholar

[37] Fierro, V., Klouz, V., Akdim, O., & Mirodatos, C. (2002). Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 75, 141–144. DOI: 10.1016/S0920-5861(02)00056-1. http://dx.doi.org/10.1016/S0920-5861(02)00056-110.1016/S0920-5861(02)00056-1Search in Google Scholar

[38] Fishtik, I., Alexander, A., Datta, R., & Geana, D. (2000). A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy, 25, 31–45. DOI: 10.1016/S0360-3199(99)00004-X. http://dx.doi.org/10.1016/S0360-3199(99)00004-X10.1016/S0360-3199(99)00004-XSearch in Google Scholar

[39] Freni, S., Cavallaro, S., Mondello, N., Spadaro, L., & Frusteri, F. (2003). Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts. Catalysis Communications, 4, 259–268. DOI: 10.1016/S1566-7367(03)00051-7. http://dx.doi.org/10.1016/S1566-7367(03)00051-710.1016/S1566-7367(03)00051-7Search in Google Scholar

[40] Freni, S., Cavallaro, S., Mondello, N., Spadaro, L., & Frusteri, F. (2002). Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC. Journal of Power Sources, 108, 53–57. DOI: 10.1016/S0378-7753(02)00004-6. http://dx.doi.org/10.1016/S0378-7753(02)00004-610.1016/S0378-7753(02)00004-6Search in Google Scholar

[41] Freni, S., Maggio, G., & Cavallaro, S. (1996). Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach. Journal of Power Sources, 62, 67–73. DOI: 10.1016/S0378-7753(96)02403-2. http://dx.doi.org/10.1016/S0378-7753(96)02403-210.1016/S0378-7753(96)02403-2Search in Google Scholar

[42] Frusteri, F., Freni, S., Chiodo, V., Spadaro, L., Di Blasi, O., Bonura, G., & Cavallaro, S. (2004a). Steam reforming of bioethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Applied Catalysis A: General, 270, 1–7. DOI: 10.1016/j.apcata.2004.03.052. http://dx.doi.org/10.1016/j.apcata.2004.03.05210.1016/j.apcata.2004.03.052Search in Google Scholar

[43] Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., & Cavallaro, S. (2004b). H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 5, 611–615. DOI: 10.1016/j.catcom.2004.07.015. http://dx.doi.org/10.1016/j.catcom.2004.07.01510.1016/j.catcom.2004.07.015Search in Google Scholar

[44] Galetti, A. E., Gomez, M. F., Arrua, L. A., Marchi, A. J., & Abello, M. C. (2008). Study of CuCoZnAl oxide as catalyst for the hydrogen production from ethanol reforming. Catalysis Communications, 9, 1201–1208. DOI: 10.1016/j.catcom.2007.11.015. http://dx.doi.org/10.1016/j.catcom.2007.11.01510.1016/j.catcom.2007.11.015Search in Google Scholar

[45] García, E. Y., & Laborde, M. A. (1991). Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis. International Journal of Hydrogen Energy, 16, 307–312. DOI: 10.1016/0360-3199(91)90166-G. http://dx.doi.org/10.1016/0360-3199(91)90166-G10.1016/0360-3199(91)90166-GSearch in Google Scholar

[46] Gates, S. M., Russell, J. N., Jr., & Yates, J. T., Jr. (1986). Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(111). Surface Science, 171, 111–134. DOI: 10.1016/0039-6028(86)90565-0. http://dx.doi.org/10.1016/0039-6028(86)90565-010.1016/0039-6028(86)90565-0Search in Google Scholar

[47] Homs, N., Llorca, J., & Ramírez de la Piscina, P. (2006). Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts: The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts. Catalysis Today, 116, 361–366. DOI: 10.1016/j.cattod.2006.05.081. http://dx.doi.org/10.1016/j.cattod.2006.05.08110.1016/j.cattod.2006.05.081Search in Google Scholar

[48] Idriss, H. (2004). Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platinum Metals Review, 48, 105–115. DOI: 10.1595/147106704X1603. http://dx.doi.org/10.1595/147106704X160310.1595/147106704X1603Search in Google Scholar

[49] Ioannides, T. (2001). Thermodynamic analysis of ethanol processors for fuel cell applications. Journal of Power Sources, 92, 17–25. DOI: 10.1016/S0378-7753(00)00498-5. http://dx.doi.org/10.1016/S0378-7753(00)00498-510.1016/S0378-7753(00)00498-5Search in Google Scholar

[50] Jacobs, G., Keogh, R. A., & Davis, B. H. (2007). Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. Journal of Catalysis, 245, 326–337. DOI: 10.1016/j.jcat.2006.10.018. http://dx.doi.org/10.1016/j.jcat.2006.10.01810.1016/j.jcat.2006.10.018Search in Google Scholar

[51] Kaddouri, A., & Mazzocchia, C. (2004). A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming. Catalysis Communications, 5, 339–345. DOI: 10.1016/j.catcom.2004.03.008. http://dx.doi.org/10.1016/j.catcom.2004.03.00810.1016/j.catcom.2004.03.008Search in Google Scholar

[52] Klouz, V., Fierro, V., Denton, P., Katz, H., Lisse, J. P., Bouvot-Mauduit, S., & Mirodatos, C. (2002). Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation. Journal of Power Sources, 105, 26–34. DOI: 10.1016/S0378-7753(01)00922-3. http://dx.doi.org/10.1016/S0378-7753(01)00922-310.1016/S0378-7753(01)00922-3Search in Google Scholar

[53] Le Valant, A., Bion, N., Can, F., Duprez, D., & Epron, F. (2010a). Preparation and characterization of bimetallic Rh-Ni/Y2O3-Al2O3 for hydrogen production by raw bioethanol steam reforming: influence of the addition of nickel on the catalyst performances and stability. Applied Catalysis B: Environmental, 97, 72–81. DOI: 10.1016/j.apcatb.2010.03.025. http://dx.doi.org/10.1016/j.apcatb.2010.03.02510.1016/j.apcatb.2010.03.025Search in Google Scholar

[54] Le Valant, A., Can, F., Bion, N., Duprez, D., & Epron, F. (2010b). Hydrogen production from raw bioethanol steam reforming: Optimization of catalyst composition with improved stability against various impurities. International Journal of Hydrogen Energy, 35, 5015–5020. DOI: 10.1016/j.ijhydene. 2009.09.008. http://dx.doi.org/10.1016/j.ijhydene.2009.09.00810.1016/j.ijhydene.2009.09.008Search in Google Scholar

[55] Le Valant, A., Garron, A., Bion, N., Epron, F., & Duprez, D. (2008). Hydrogen production from raw bioethanol over Rh/MgAl2O4 catalyst: Impact of impurities: Heavy alcohol, aldehyde, ester, acid and amine. Catalysis Today, 138, 169–174. DOI: 10.1016/j.cattod.2008.06.013. http://dx.doi.org/10.1016/j.cattod.2008.06.01310.1016/j.cattod.2008.06.013Search in Google Scholar

[56] Liberatori, J. W. C., Ribeiro, R. U., Zanchet, D., Noronha, F. B., & Bueno, J. M. C. (2007). Steam reforming of ethanol on supported nickel catalysts. Applied Catalysis A: General, 327, 197–204. DOI: 10.1016/j.apcata.2007.05.010. http://dx.doi.org/10.1016/j.apcata.2007.05.01010.1016/j.apcata.2007.05.010Search in Google Scholar

[57] Liguras, D. K., Kondarides, D. I., & Verykios, X. E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 43, 345–354. DOI: 10.1016/S0926-3373(02)00327-2. http://dx.doi.org/10.1016/S0926-3373(02)00327-210.1016/S0926-3373(02)00327-2Search in Google Scholar

[58] Lindo, M., Vizcaíno, A. J., Calles, J. A., & Carrero, A. (2010). Ethanol steam reforming on Ni/Al-SBA-15 catalysts: Effect of the aluminium content. International Journal of Hydrogen Energy, 35, 5895–5901. DOI: 10.1016/j.ijhydene.2009.12.120. http://dx.doi.org/10.1016/j.ijhydene.2009.12.12010.1016/j.ijhydene.2009.12.120Search in Google Scholar

[59] Liu, J.-Y., Lee, C.-C., Wang, C.-H., Yeh, C.-T., & Wang, C.-B. (2010). Application of nickel-lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen. International Journal of Hydrogen Energy, 35, 4069–4075. DOI: 10.1016/j.ijhydene.2010.01.141. http://dx.doi.org/10.1016/j.ijhydene.2010.01.14110.1016/j.ijhydene.2010.01.141Search in Google Scholar

[60] Llorca, J., Homs, N., Sales, J., & Ramírez de la Piscina, P. (2002). Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. Journal of Catalysis, 209, 306–317. DOI: 10.1006/jcat.2002.3643. http://dx.doi.org/10.1006/jcat.2002.364310.1006/jcat.2002.3643Search in Google Scholar

[61] Llorca, J., Ramírez de la Piscina, P., Dalmon, J.-A., Sales, J., & Homs, N. (2003). CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor. Applied Catalysis B: Environmental, 43, 355–369. DOI: 10.1016/S0926-3373(02)00326-0. http://dx.doi.org/10.1016/S0926-3373(02)00326-010.1016/S0926-3373(02)00326-0Search in Google Scholar

[62] Mariño, F., Baronetti, G., Jobbagy, M., & Laborde, M. (2003). Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming: Formation of hydrotalcite-type compounds as a result of metal-support interaction. Applied Catalysis A: General, 238, 41–54. DOI: 10.1016/S0926-860X(02)00113-8. http://dx.doi.org/10.1016/S0926-860X(02)00113-810.1016/S0926-860X(02)00113-8Search in Google Scholar

[63] Mariño, F., Boveri, M., Baronetti, G., & Laborde, M. (2004). Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts. International Journal of Hydrogen Energy, 29, 67–71. DOI: 10.1016/S0360-3199(03)00052-1. http://dx.doi.org/10.1016/S0360-3199(03)00052-110.1016/S0360-3199(03)00052-1Search in Google Scholar

[64] Mariño, F., Boveri, M., Baronetti, G., & Laborde, M. (2001). Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts. Effect of Ni. International Journal of Hydrogen Energy, 26, 665–668. DOI: 10.1016/S0360-3199(01)00002-7. http://dx.doi.org/10.1016/S0360-3199(01)00002-710.1016/S0360-3199(01)00002-7Search in Google Scholar

[65] Mariño, F. J., Cerrella, E. G., Duhalde, S., Jobbagy, M., & Laborde, M. A. (1998). Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts. International Journal of Hydrogen Energy, 23, 1095–1101. DOI: 10.1016/S0360-3199(97)00173-0. http://dx.doi.org/10.1016/S0360-3199(97)00173-010.1016/S0360-3199(97)00173-0Search in Google Scholar

[66] Mas, V., Kipreos, R., Amadeo, N., & Laborde, M. (2006). Thermodynamic analysis of ethanol/water system with the stoichiometric method. International Journal of Hydrogen Energy, 31, 21–28. DOI: 10.1016/j.ijhydene.2005.04.004. http://dx.doi.org/10.1016/j.ijhydene.2005.04.00410.1016/j.ijhydene.2005.04.004Search in Google Scholar

[67] Men, Y., Kolb, G., Zapf, R., Hessel, V., & Löwe, H. (2007). Ethanol steam reforming in a microchannel reactor. Process Safety and Environmental Protection, 85, 413–418. DOI: 10.1205/psep07015. http://dx.doi.org/10.1205/psep0701510.1205/psep07015Search in Google Scholar

[68] Muroyama, H., Nakase, R., Matsui, T., & Eguchi, K. (2010). Ethanol steam reforming over Ni-based spinel oxide. International Journal of Hydrogen Energy, 35, 1575–1581. DOI: 10.1016/j.ijhydene.2009.12.083. http://dx.doi.org/10.1016/j.ijhydene.2009.12.08310.1016/j.ijhydene.2009.12.083Search in Google Scholar

[69] Navarro, R. M., Álvarez-Galván, M. C., Sánchez-Sánchez, M. C., Rosa, F., & Fierro, J. L. G. (2005). Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Applied Catalysis B: Environmental, 55, 229–241. DOI: 10.1016/j.apcatb.2004.09.002. http://dx.doi.org/10.1016/j.apcatb.2004.09.00210.1016/j.apcatb.2004.09.002Search in Google Scholar

[70] Ni, M., Leung, D. Y. C., & Leung, M. K. H. (2007). A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32, 3238–3247. DOI: 10.1016/j.ijhydene.2007.04.038. http://dx.doi.org/10.1016/j.ijhydene.2007.04.03810.1016/j.ijhydene.2007.04.038Search in Google Scholar

[71] Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y., Shen, W.-J., & Imamura, S. (2005). Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A: General, 279, 273–277. DOI: 10.1016/j.apcata.2004.10.035. http://dx.doi.org/10.1016/j.apcata.2004.10.03510.1016/j.apcata.2004.10.035Search in Google Scholar

[72] Padilla, R., Benito, M., Rodríguez, L., Serrano, A., Muñoz, G., & Daza, L. (2010). Nickel and cobalt as active phase on supported zirconia catalysts for bio-ethanol reforming: Influence of the reaction mechanism on catalysts performance. International Journal of Hydrogen Energy, 35, 8921–8928. DOI: 10.1016/j.ijhydene.2010.06.021. http://dx.doi.org/10.1016/j.ijhydene.2010.06.02110.1016/j.ijhydene.2010.06.021Search in Google Scholar

[73] Profeti, L. P. R., Dias, J. A. C., Assaf, J. M., & Assaf, E. M. (2009). Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals. Journal of Power Sources, 190, 525–533. DOI: 10.1016/j.jpowsour.2008.12.104. http://dx.doi.org/10.1016/j.jpowsour.2008.12.10410.1016/j.jpowsour.2008.12.104Search in Google Scholar

[74] Rabenstein, G., & Hacker, V. (2008). Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources, 185, 1293–1304. DOI: 10.1016/j.jpowsour.2008.08.010. http://dx.doi.org/10.1016/j.jpowsour.2008.08.01010.1016/j.jpowsour.2008.08.010Search in Google Scholar

[75] Raskó, J., Hancz, A., & Erdöhelyi, A. (2004). Surface species and gas phase products in steam reforming of ethanol on TiO2 and Rh/TiO2. Applied Catalysis A: General, 269, 13–25. DOI: 10.1016/j.apcata.2004.03.053. http://dx.doi.org/10.1016/j.apcata.2004.03.05310.1016/j.apcata.2004.03.053Search in Google Scholar

[76] Rass-Hansen, J., Johansson, R., Møller, M., & Christensen, C. H. (2008). Steam reforming of technical bioethanol for hydrogen production. International Journal of Hydrogen Energy, 33, 4547–4554. DOI: 10.1016/j.ijhydene.2008.06.020. http://dx.doi.org/10.1016/j.ijhydene.2008.06.02010.1016/j.ijhydene.2008.06.020Search in Google Scholar

[77] Resini, C., Herrera Delgado, M. C., Presto, S., Alemany, L. J., Riani, P., Marazza, R., Ramis, G., & Busca, G. (2008). Yttria-stabilized zirconia (YSZ) supported Ni-Co alloys (precursor of SOFC anodes) as catalysts for the steam reforming of ethanol. International Journal of Hydrogen Energy, 33, 3728–3735. DOI: 10.1016/j.ijhydene.2008.04.044. http://dx.doi.org/10.1016/j.ijhydene.2008.04.04410.1016/j.ijhydene.2008.04.044Search in Google Scholar

[78] Resini, C., Montanari, T., Barattini, L., Ramis, G., Busca, G., Presto, S., Riani, P., Marazza, R., Sisani, M., Marmottini, F., & Costantino, U. (2009). Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcitelike precursors: Catalyst characterization, catalytic activity and reaction path. Applied Catalysis A: General, 355, 83–93. DOI: 10.1016/j.apcata.2008.11.029. http://dx.doi.org/10.1016/j.apcata.2008.11.02910.1016/j.apcata.2008.11.029Search in Google Scholar

[79] Romero-Sarria, F., Vargas, J. C., Roger, A.-C., & Kiennemann, A. (2008). Hydrogen production by steam reforming of ethanol: Study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: Comparison of Ni/Co and effect of Rh. Catalysis Today, 133–135, 149–153. DOI: 10.1016/j.cattod.2007.12.084. http://dx.doi.org/10.1016/j.cattod.2007.12.08410.1016/j.cattod.2007.12.084Search in Google Scholar

[80] Rossi, C. C. R. S., Alonso, C. G., Antunes, O. A. C., Guirardello, R., & Cardozo-Filho, L. (2009). Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production. International Journal of Hydrogen Energy, 34, 323–332. DOI: 10.1016/j.ijhydene.2008.09.071. http://dx.doi.org/10.1016/j.ijhydene.2008.09.07110.1016/j.ijhydene.2008.09.071Search in Google Scholar

[81] Sahoo, D. R., Vajpai, S., Patel, S., & Pant, K. K. (2007). Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al2O3 catalyst. Chemical Engineering Journal, 125, 139–147. DOI: 10.1016/j.cej.2006.08.011. http://dx.doi.org/10.1016/j.cej.2006.08.01110.1016/j.cej.2006.08.011Search in Google Scholar

[82] Sánchez-Sánchez, M. C., Navarro, R. M., & Fierro, J. L. G. (2007). Ethanol steam reforming over Ni/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy, 32, 1462–1471. DOI: 10.1016/j.ijhydene.2006.10.025. http://dx.doi.org/10.1016/j.ijhydene.2006.10.02510.1016/j.ijhydene.2006.10.025Search in Google Scholar

[83] Song, H., Zhang, L., Watson, R. B., Braden, D., & Ozkan, U. S. (2007). Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catalysis Today, 129, 346–354. DOI: 10.1016/j.cattod.2006.11.028. http://dx.doi.org/10.1016/j.cattod.2006.11.02810.1016/j.cattod.2006.11.028Search in Google Scholar

[84] Srisiriwat, N., Therdthianwong, S., & Therdthianwong, A. (2009). Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. International Journal of Hydrogen Energy, 34, 2224–2234. DOI: 10.1016/j.ijhydene.2008.12.058. http://dx.doi.org/10.1016/j.ijhydene.2008.12.05810.1016/j.ijhydene.2008.12.058Search in Google Scholar

[85] Sun, J., Qiu, X.-P., Wu, F., & Zhu, W.-T. (2005). H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy, 30, 437–445. DOI: 10.1016/j.ijhydene.2004.11.005. http://dx.doi.org/10.1016/j.ijhydene.2004.11.00510.1016/j.ijhydene.2004.11.005Search in Google Scholar

[86] Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., & Hao, S. (2004). Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. International Journal of Hydrogen Energy, 29, 1075–1081. DOI: 10.1016/j.ijhydene.2003.11.004. http://dx.doi.org/10.1016/j.ijhydene.2003.11.00410.1016/j.ijhydene.2003.11.004Search in Google Scholar

[87] Sun, J., Wang, Y., Li, J., Xiao, G., Zhang, L., Li, H., Cheng, Y., Sun, C., Cheng, Z., Dong, Z., & Chen, L. (2010). H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. International Journal of Hydrogen Energy, 35, 3087–3091. DOI: 10.1016/j.ijhydene.2009.07.020. http://dx.doi.org/10.1016/j.ijhydene.2009.07.02010.1016/j.ijhydene.2009.07.020Search in Google Scholar

[88] Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal, 117, 39–49. DOI: 10.1016/j.cej.2005.12.008. http://dx.doi.org/10.1016/j.cej.2005.12.00810.1016/j.cej.2005.12.008Search in Google Scholar

[89] Vargas, J. C., Libs, S., Roger, A.-C., & Kiennemann, A. (2005). Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bioethanol. Catalysis Today, 107–108, 417–425. DOI: 10.1016/j.cattod.2005.07. 118. http://dx.doi.org/10.1016/j.cattod.2005.07.11810.1016/j.cattod.2005.07.118Search in Google Scholar

[90] Vasudeva, K., Mitra, N., Umasankar, P., & Dhingra, S. C. (1996). Steam reforming of ethanol for hydrogen production: Thermodynamic analysis. International Journal of Hydrogen Energy, 21, 13–18. DOI: 10.1016/0360-3199(95)00030-H. http://dx.doi.org/10.1016/0360-3199(95)00030-H10.1016/0360-3199(95)00030-HSearch in Google Scholar

[91] Velu, S., Suzuki, K., Vijayaraj, M., Barman, S., & Gopinath, C. S. (2005). In situ XPS investigations of Cu1−x NixZnAlmixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Applied Catalysis B: Environmental, 55, 287–299. DOI: 10.1016/j.apcatb.2004.09.007. http://dx.doi.org/10.1016/j.apcatb.2004.09.00710.1016/j.apcatb.2004.09.007Search in Google Scholar

[92] Vizcaíno, A. J., Arena, P., Baronetti, G., Carrero, A., Calles, J. A., Laborde, M. A., & Amadeo, N. (2008). Ethanol steam reforming on Ni/Al2O3 catalysts: Effect of Mg addition. International Journal of Hydrogen Energy, 33, 3489–3492. DOI: 10.1016/j.ijhydene.2007.12.012. http://dx.doi.org/10.1016/j.ijhydene.2007.12.01210.1016/j.ijhydene.2007.12.012Search in Google Scholar

[93] Wyman, C. (1996). Handbook on bioethanol: Production and utilization. Washington, DC, USA: Taylor & Francis. Search in Google Scholar

[94] Yang, Y., Ma, J., & Wu, F. (2006). Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. International Journal of Hydrogen Energy, 31, 877–882. DOI: 10.1016/j.ijhydene.2005.06.029. http://dx.doi.org/10.1016/j.ijhydene.2005.06.02910.1016/j.ijhydene.2005.06.029Search in Google Scholar

[95] Youn, M. H., Seo, J. G., Cho, K. M., Park, S., Park, D. R., Jung, J. C., & Song, I. K. (2008a). Hydrogen production by autothermal reforming of ethanol over nickel catalysts supported on Ce-modified mesoporous zirconia: Effect of Ce/Zr molar ratio. International Journal of Hydrogen Energy, 33, 5052–5059. DOI: 10.1016/j.ijhydene.2008.07.084. http://dx.doi.org/10.1016/j.ijhydene.2008.07.08410.1016/j.ijhydene.2008.07.084Search in Google Scholar

[96] Youn, M. H., Seo, J. G., Park, S., Jung, J. C., Park, D. R., & Song, I. K. (2008b). Hydrogen production by autothermal reforming of ethanol over Ni catalysts supported on ZrO2: Effect of preparation method of ZrO2 support. International Journal of Hydrogen Energy, 33, 7457–7463. DOI: 10.1016/j.ijhydene.2008.10.017. http://dx.doi.org/10.1016/j.ijhydene.2008.10.01710.1016/j.ijhydene.2008.10.017Search in Google Scholar

[97] Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., & Shen, W. (2006). Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catalysis Communications, 7, 367–372. DOI: 10.1016/j.catcom.2005.12.014. http://dx.doi.org/10.1016/j.catcom.2005.12.01410.1016/j.catcom.2005.12.014Search in Google Scholar

Published Online: 2011-3-16
Published in Print: 2011-6-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Steam-reforming of ethanol for hydrogen production
  2. Polymeric ionic liquid as a background electrolyte modifier enhancing the separation of inorganic anions by capillary electrophoresis
  3. Enantioselective extraction of terbutaline enantiomers with β-cyclodextrin derivatives as hydrophilic selectors
  4. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
  5. Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst
  6. Spectroscopic investigations and physico-chemical characterization of newly synthesized mixed-ligand complexes of 2-methylbenzimidazole with metal ions
  7. Synthesis, molecular characterisation, and in vivo study of platinum(IV) coordination compounds against B16 mouse melanoma tumours
  8. Swelling properties of particles in amphoteric polyacrylamide dispersion
  9. Electronic structures and spectroscopic regularities of phenylene-modified SWCNTs
  10. An expeditious, environment-friendly, and microwave-assisted synthesis of 5-isatinylidenerhodanine derivatives
  11. Pd-catalysed conjugate addition of arylboronic acids to α,β-unsaturated ketones under microwave irradiation
  12. Regioselective N-alkylation of (2-chloroquinolin-3-yl) methanol with N-heterocyclic compounds using the Mitsunobu reagent
  13. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6
  14. Polar constituents of Ligustrum vulgare L. and their effect on lipoxygenase activity
  15. Solubility of methane in pure non-ionic surfactants and pure and mixtures of linear alcohols at 298 K and 101.3 kPa
  16. Theoretical studies on polynitrobicyclo[1.1.1]pentanes in search of novel high energy density materials
  17. Insight into the degradation of a manganese(III)-citrate complex in aqueous solutions
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0100-0/pdf
Scroll to top button