Aquaculture by-product: a source of proteolytic enzymes for detergent additives
-
Chirleanny Mendes
, Marília Brito
, Tatiana Porto , Ana Porto , Ranilson Bezerra , Luiz Carvalho , Ana Caneiro-Leão and Maria Carneiro-da-Cunha
Abstract
Intestine proteases of Nile tilapia (Oreochromis niloticus) were partially purified by heat treatment (purification factor of 3.5, enzyme activity remained almost constant) to reach the maximum activity and stability within an alkaline pH range of 7.2–11.0. The optimum temperature and stability over a 120 min period were found to be at 55°C and at 35–45°C, respectively. The proteases’ activity was not affected by a 1 vol. % saponin surfactant, inactivated by 0.01 g mL−1 sodium dodecylsulphate after 120 min, and it remained stable for 30 min in a 5 vol. % and 10 vol. % hydrogen peroxide solutions. The proteases were slightly activated by Ca2+, Mg2+, and K+ and the substrate most effectively hydrolysed was casein (40.0 U mg−1). A 24 full factorial design used to evaluated the influence of independent variables showed that the enzyme extract, detergent concentration and the incubation time had a significant influence on the enzymatic activity. The best conditions to be used concerning detergent additive were found with 0.3 mg mL−1 of protein and 3.0 mg mL−1 of detergent for 30 min in the presence of Astrus® detergent.
[1] Alencar, R. B., Biondi, M. M., Paiva, P. M. G., Vieira V. L. A., Carvalho, L. B., Jr., & Bezerra, R. de S. (2003). Alkaline proteases from the digestive tract of four tropical fishes. Brazilian Journal of Food Technology, 6, 279–284. Search in Google Scholar
[2] Bezerra, R. S., Santos, J. F., Paiva, P. M. G., Correia, M. T. S., Coelho, L. C. B. B., Vieira, V. L. A., & Carvalho, L. B., Jr. (2001). Partial purification and characterization of a thermostable trypsin from pyloric caeca of tambaqui (Colossoma macropomum). Journal of Food Biochemistry, 25, 199–210. DOI: 10.1111/j.1745-4514.2001.tb00734.x. http://dx.doi.org/10.1111/j.1745-4514.2001.tb00734.x10.1111/j.1745-4514.2001.tb00734.xSearch in Google Scholar
[3] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3. http://dx.doi.org/10.1016/0003-2697(76)90527-310.1016/0003-2697(76)90527-3Search in Google Scholar
[4] Cao, M.-J., Osatomi, K., Suzuki, M., Hara, K., Tachibana, K., & Ishihara, T. (2000). Purification and characterization of two anionic trypsins from the hepatopancreas of carp. Fisheries Science, 66, 1172–1179. DOI: 10.1046/j.1444-2906.2000.00185.x. http://dx.doi.org/10.1046/j.1444-2906.2000.00185.x10.1046/j.1444-2906.2000.00185.xSearch in Google Scholar
[5] Castillo-Yáñez, F. J., Pacheco-Aguilar, R., García-Carreño, F. L., & Navarrete-Del Toro, M. A. (2005). Isolation and characterization of trypsin from pyloric caeca of Monterey sardine Sardinops sagax caerulea. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140, 91–98. DOI: 10.1016/j.cbpc.2004.09.031. http://dx.doi.org/10.1016/j.cbpc.2004.09.03110.1016/j.cbpc.2004.09.031Search in Google Scholar
[6] Cohen T., Gertler, A., & Birk, Y. (1981). Pancreatic proteolytic enzymes from carp (Cyprinus carpio)—II. Kinetic properties and inhibition studies of trypsin, chymotrypsin and elastase. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 69, 647–653. DOI: 10.1016/0305-0491(81)90365-5. http://dx.doi.org/10.1016/0305-0491(81)90365-510.1016/0305-0491(81)90365-5Search in Google Scholar
[7] El-Shemy, M. G., & Levin, R. E. (1997). Characterization of affinity-purified trypsin from hybrid tilapia (Tilapia nilotica/aurea). Journal of Food Biochemistry, 21, 163–175. DOI: 10.1111/j.1745-4514.1997.tb00221.x. http://dx.doi.org/10.1111/j.1745-4514.1997.tb00221.x10.1111/j.1745-4514.1997.tb00221.xSearch in Google Scholar
[8] Espósito, T. S., Amaral, I. P. G., Marcuschi, M., Carvalho, L. B., Jr., & Bezerra, R. S. (2009a). Surfactants- and oxidantsresistant alkaline proteases from common carp (Cyprinus carpio L.) processing waste. Journal of Food Biochemistry. In press. 10.1111/j.1745-4514.2009.00255.xSearch in Google Scholar
[9] Espósito, T. S., Amaral, I. P. G., Buarque, D. S., Oliveira, G. B., Carvalho, L. B., Jr., & Bezerra, R. S. (2009b). Fish processing waste as a source of alkaline proteases for laundry detergent. Food Chemistry, 112, 125–130. DOI: 10.1016/j.foodchem.2008.05.049. http://dx.doi.org/10.1016/j.foodchem.2008.05.04910.1016/j.foodchem.2008.05.049Search in Google Scholar
[10] George, S., Raju V., Krishnan, M. R. V., Subramanian, T. V., & Jayaraman, K. (1995). Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochemistry, 30, 457–462. DOI: 10.1016/0032-9592(94)00034-F. 10.1016/0032-9592(94)00034-FSearch in Google Scholar
[11] Guizani, N., Rolle, R. S., Marshall, M. R., & Wei, C. I. (1991). Isolation, purification and characterization of a trypsin from the pyloric ceca of mullet (Mugil cephalus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 98, 517–521. DOI: 10.1016/0305-0491(91)90246-A. http://dx.doi.org/10.1016/0305-0491(91)90246-A10.1016/0305-0491(91)90246-ASearch in Google Scholar
[12] IBAMA (2008). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Estatística da pesca 2006 Brasil: Grandes Regiöes e Unidades da Federaçăo. Brasília, Brazil. Search in Google Scholar
[13] Joo, H.-S., & Chang, C.-S. (2006). Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: Feasibility as a laundry detergent additive. Enzyme and Microbial Technology, 38, 176–183. DOI: 10.1016/j.enzmictec.2005.05.008. http://dx.doi.org/10.1016/j.enzmictec.2005.05.00810.1016/j.enzmictec.2005.05.008Search in Google Scholar
[14] Kishimura, H., Hayashi, K., Miyashita, Y., & Nonami, Y. (2005). Characteristics of two trypsin isozymes from the viscera of Japanese anchovy (Engraulis japonica). Journal of Food Biochemistry, 29, 459–469. DOI: 10.1111/j.1745-4514.2005.00029.x. http://dx.doi.org/10.1111/j.1745-4514.2005.00029.x10.1111/j.1745-4514.2005.00029.xSearch in Google Scholar
[15] Kishimura, H., Tokuda, Y., Klomklao, S., Benjakul, S., & Ando, S. (2006a). Enzymatic characteristics of trypsin from pyloric ceca of spotted mackerel (Scomber australasicus). Journal of Food Biochemistry, 30, 466–477. DOI: 10.1111/j.1745-4514.2006.00076.x. http://dx.doi.org/10.1111/j.1745-4514.2006.00076.x10.1111/j.1745-4514.2006.00076.xSearch in Google Scholar
[16] Kishimura, H., Tokuda, Y., Klomklao, S., Benjakul, S., & Ando, S. (2006b). Comparative study of enzymatic characteristics of trypsins from the pyloric ceca of yellow tail (Seriola quinqueradiata) and brown hakeling (Physiculus japonicus). Journal of Food Biochemistry, 30, 521–534. DOI: 10.1111/j.1745-4514.2006.00079.x. http://dx.doi.org/10.1111/j.1745-4514.2006.00079.x10.1111/j.1745-4514.2006.00079.xSearch in Google Scholar
[17] Kishimura, H., Hayashi, K., Miyashita, Y., & Nonami, Y. (2006c). Characteristics of trypsins from the viscera of true sardine (Sardinops melanostictus) and the pyloric ceca of arabesque greenling (Pleuroprammus azonus). Food Chemistry, 97, 65–70. DOI: 10.1016/j.foodchem.2005.03.008. http://dx.doi.org/10.1016/j.foodchem.2005.03.00810.1016/j.foodchem.2005.03.008Search in Google Scholar
[18] Kishimura, H., Tokuda, Y., Yabe, M., Klomklao, S., Benjakul, S., & Ando, S. (2007). Trypsins from the pyloric ceca of jacopever (Sebastes schlegelli) and elkhorn sculpin (Alcichthys alcicornis): Isolation and characterization. Food Chemistry, 100, 1490–1495. DOI: 10.1016/j.foodchem.2005.11.040. http://dx.doi.org/10.1016/j.foodchem.2005.11.04010.1016/j.foodchem.2005.11.040Search in Google Scholar
[19] Kishimura, H., Klomklao, S., Benjakul, S., & Chun, B.-S. (2008). Characteristics of trypsin from the pyloric ceca of walleye pollock (Theragra chalcogramma). Food Chemistry, 106, 194–199. DOI: 10.1016/j.foodchem.2007.05.056. http://dx.doi.org/10.1016/j.foodchem.2007.05.05610.1016/j.foodchem.2007.05.056Search in Google Scholar
[20] Klomklao, S., Benjakul, S., & Visessanguan, W. (2004). Comparative studies on proteolytic activity of splenic extract from three tuna species commonly used in Thailand. Journal of Food Biochemistry, 28, 355–372. DOI: 10.1111/j.1745-4514.2004.05203.x. 10.1111/j.1745-4514.2004.05203.xSearch in Google Scholar
[21] Kumar, C. G., & Takagi, H. (1999). Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 17, 561–594. DOI: 10.1016/S0734-9750(99)00027-0. http://dx.doi.org/10.1016/S0734-9750(99)00027-010.1016/S0734-9750(99)00027-0Search in Google Scholar
[22] Lu, B.-J., Zhou, L.-G., Cai, Q.-F., Hara, K., Maeda, A., Su, W.-J., & Cao, M.-J. (2008). Purifcation and characterisation of trypsins from the pyloric caeca of mandarin fish (Siniperca chuatsi). Food Chemistry, 110, 352–360. DOI: 10.1016/j.foodchem.2008.02.010. http://dx.doi.org/10.1016/j.foodchem.2008.02.01010.1016/j.foodchem.2008.02.010Search in Google Scholar PubMed
[23] Maurer, K.-H. (2004). Detergent proteases. Current Opinion in Biotechnology, 15, 330–334. DOI: 10.1016/j.copbio.2004.06.005. http://dx.doi.org/10.1016/j.copbio.2004.06.00510.1016/j.copbio.2004.06.005Search in Google Scholar PubMed
[24] Moreira, K. A., Albuquerque, B. F., Teixeira, M. F. S., Porto, A. L. F., & Lima Filho, J. L. (2002). Application of protease from Nocardiopsis sp. as a laundry detergent additive. World Journal of Microbiology and Biotechnology, 18, 307–315. DOI: 10.1023/A:1015221327263. http://dx.doi.org/10.1023/A:101522132726310.1023/A:1015221327263Search in Google Scholar
[25] Neto, B. B., Scarmini, I. C., & Bruns, R. E. (2002). Como fazer experimentos: pesquisa e desenvolvimento na cięncia e na indústria. Campinas: Editora da Universidade de Campinas — UNICAMP. Search in Google Scholar
[26] Outtrup, H., Dambumann, C., Christiansen, M., & Aaslyng, D. A. (1995). US Patent No. 5466594. Washington, D.C.: US Patent and Trademark Office. Pokorny, M., Vitale, L., Turk, V., Renko, M., & Žuvanić, J. (1979). Streptomyces rirnosus extracelular proteases. Applied Microbiology and Biotechnology, 8, 81–90. DOI: 10.1007/BF00510269. 10.1007/BF00510269Search in Google Scholar
[27] Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635. 10.1128/MMBR.62.3.597-635.1998Search in Google Scholar PubMed PubMed Central
[28] Saisubramanian, N., Edwinoliver, N. G., Nandakumar, N., Kamini, N. R., & Puvanakrishnan, R. (2006). Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. Journal of Industrial Microbiology and Biotechnology, 33, 669–676. DOI: 10.1007/s10295-006-0100-9. http://dx.doi.org/10.1007/s10295-006-0100-910.1007/s10295-006-0100-9Search in Google Scholar PubMed
[29] Sana, B., Ghosh, D., Saha, M., & Mukherjee, J. (2006). Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochemistry, 41, 208–215. DOI: 10.1016/j.procbio.2005.09.010. http://dx.doi.org/10.1016/j.procbio.2005.09.01010.1016/j.procbio.2005.09.010Search in Google Scholar
[30] Souza, A. A. G., Amaral, I. P. G., Santo, A. R. E., Carvalho, L. B., Jr., & Bezerra, R. S. (2007). Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chemistry, 100, 1429–1434. DOI: 10.1016/j.foodchem.2005.12.016. http://dx.doi.org/10.1016/j.foodchem.2005.12.01610.1016/j.foodchem.2005.12.016Search in Google Scholar
[31] Vasconcelos, A., Silva, C. J. S. M., Schroeder, M., Guebitz, G. M., & Cavaco-Paulo, A. (2006). Detergent formulations for wool domestic washings contained immobilized enzymes. Biotechnology Letters, 28, 725–731. DOI: 10.1007/s10529-006-9050-6. http://dx.doi.org/10.1007/s10529-006-9050-610.1007/s10529-006-9050-6Search in Google Scholar PubMed
[32] Wolff, A. M., & Wentes, S. W. C. (1996). Laundry performance of subtilisins proteinases. In R. Batt & C. Betzel (Eds.), Subtilisin enzymes: Practical protein engineering (pp. 113–120). Netherlands: Kluwer Academic Publishers. Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
- Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
- An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
- Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
- A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
- Aquaculture by-product: a source of proteolytic enzymes for detergent additives
- Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
- Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
- Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
- Synthesis and characterization of mesoporous molecular sieves
- Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
- Novel use of silicon nanocrystals and nanodiamonds in biology
- Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
- Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
- Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
- Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
- Rheological properties of doughs with buckwheat and quinoa additives
- Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Articles in the same Issue
- Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
- Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
- An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
- Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
- A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
- Aquaculture by-product: a source of proteolytic enzymes for detergent additives
- Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
- Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
- Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
- Synthesis and characterization of mesoporous molecular sieves
- Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
- Novel use of silicon nanocrystals and nanodiamonds in biology
- Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
- Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
- Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
- Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
- Rheological properties of doughs with buckwheat and quinoa additives
- Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry