Home Synthesis and characterization of mesoporous molecular sieves
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterization of mesoporous molecular sieves

  • Michal Horňáček EMAIL logo , Pavol Hudec and Agáta Smiešková
Published/Copyright: October 8, 2009
Become an author with De Gruyter Brill

Abstract

In the synthesis of mesoporous molecular sieves of the type MCM-41, different cationactive surfactants and sources of silicon were used. Moreover, Al-MCM-41 samples with different content of aluminium were synthesized. MCM-41 and Al-MCM-41 were synthesized at elevated temperature in stainless-steel autoclaves. Prepared mesoporous molecular sieves were characterized by powder X-ray diffraction (XRD), physical adsorption of nitrogen at the temperature of −197°C, sorption capacity of benzene, and by infrared spectroscopy (FTIR). Acidity was measured for Al-MCM-41 by temperature programmed desorption of ammonia (TPDA) and by FTIR of adsorbed pyridine. Acid catalytic activity of Al-MCM-41 was tested by isomerization of o-xylene. Influence of the synthesis reproducibility, surfactant used, source of silicon, synthesis time, source of aluminium, and Si to Al mole ratio on the properties of mesoporous molecular sieves were evaluated.

[1] Anderson, M. W. (1997). Simplified description of MCM-48. Zeolites, 19, 220–227. DOI: 10.1016/S0144-2449(97)00061-4. http://dx.doi.org/10.1016/S0144-2449(97)00061-410.1016/S0144-2449(97)00061-4Search in Google Scholar

[2] Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843. DOI: 10.1021/ja00053a020. http://dx.doi.org/10.1021/ja00053a02010.1021/ja00053a020Search in Google Scholar

[3] Behrens, P., Glaue, A., Haggenmüller, C., & Schechner, G. (1997). Structure-directed materials syntheses: Synthesis field diagrams for the preparation of mesostructured silicas. Solid State Ionics, 101–103, 255–260. DOI: 10.1016/S0167-2738(97)84039-8. 10.1016/S0167-2738(97)84039-8Search in Google Scholar

[4] Blažej, A. (1977). Tenzidy. Bratislava: Alfa. Search in Google Scholar

[5] Corma, A. (1997). From microporous to mesoporous molecular-sieve materials and their use in catalysis. Chemical Reviews, 97, 2373–2420. DOI: 10.1021/cr960406n. http://dx.doi.org/10.1021/cr960406n10.1021/cr960406nSearch in Google Scholar

[6] De Stefanis, A., Kaciulis, S., & Pandolfi, L. (2007). Preparation and characterization of Fe-MCM-41 catalysts employed in the degradation of plastic materials. Microporous and Mesoporous Materials, 99, 140–148. DOI: 10.1016/j.micromeso.2006.08.033. http://dx.doi.org/10.1016/j.micromeso.2006.08.03310.1016/j.micromeso.2006.08.033Search in Google Scholar

[7] Emeis, C. A. (1993). Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysis. Journal of Catalysis, 141, 347–354. DOI: 10.1006/jcat.1993.1145. http://dx.doi.org/10.1006/jcat.1993.114510.1006/jcat.1993.1145Search in Google Scholar

[8] Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712. DOI: 10.1038/359710a0. http://dx.doi.org/10.1038/359710a010.1038/359710a0Search in Google Scholar

[9] Kumar, D., Schumacher, K., du Fresne von Hohenesche, C., Grün, M., & Unger, K. K. (2001). MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187–188, 109–116. DOI: 10.1016/S0927-7757(01)00638-0. http://dx.doi.org/10.1016/S0927-7757(01)00638-010.1016/S0927-7757(01)00638-0Search in Google Scholar

[10] Laforge, S., Ayrault, P., Martin, D., & Guisnet, M. (2005). Acidic and catalytic properties of MCM-22 and MCM-36 zeolites synthesized from the same precursors. Applied Catalysis A: General, 279, 79–88. DOI: 10.1016/j.apcata.2004.10.015. http://dx.doi.org/10.1016/j.apcata.2004.10.01510.1016/j.apcata.2004.10.015Search in Google Scholar

[11] Mokaya, R. (1999). Ultrastable mesoporous aluminosilicates by grafting routes. Angewandte Chemie, 38, 2930–2934. DOI: 10.1002/(SICI)1521-3773(19991004)38:19<2930::AIDANIE2930> 3.0.CO;2–8. http://dx.doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2930::AID-ANIE2930>3.0.CO;2-810.1002/(SICI)1521-3773(19991004)38:19<2930::AID-ANIE2930>3.0.CO;2-8Search in Google Scholar

[12] Monnier, A., Schüth, F., Huo, Q., Kumar, D., Maxwell, R. S., Margolese, D., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., & Chmelka, B. F. (1992). Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261, 1299–1303. DOI: 10.1126/science.261.5126.1299. http://dx.doi.org/10.1126/science.261.5126.129910.1126/science.261.5126.1299Search in Google Scholar PubMed

[13] Rathousky, J., Zukalová, M. Zukal, A., & Had, J. (1998). Homogeneous precipitation of siliceous MCM-41 and bimodal silica. Collection of Czechoslovak Chemical Communications, 63, 1895–1906. DOI: 10.1135/cccc19981893. 10.1135/cccc19981893Search in Google Scholar

[14] Savidha, R., & Pandurangan, A. (2004). Vapour phase isopropylation of phenol over zinc- and iron-containing Al-MCM-41 molecular sieves. Applied Catalysis A: General, 262, 1–11. DOI: 10.1016/j.apcata.2003.08.018. http://dx.doi.org/10.1016/j.apcata.2003.08.01810.1016/j.apcata.2003.08.018Search in Google Scholar

[15] Taguchi, A., & Schuth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77, 1–45. DOI: 10.1016/j.micromeso.2004.06.030. http://dx.doi.org/10.1016/j.micromeso.2004.06.03010.1016/j.micromeso.2004.06.030Search in Google Scholar

[16] Zheng, Y., Li, Z., Zheng, Y., Shen, X., & Lin, L. (2006). Synthesis and characterization of Fe-Ce-MCM-41. Materials Letters, 60, 3221–3223. DOI: 10.1016/j.matlet.2006.02.075. http://dx.doi.org/10.1016/j.matlet.2006.02.07510.1016/j.matlet.2006.02.075Search in Google Scholar

Published Online: 2009-10-8
Published in Print: 2009-12-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Utilization of solid phase spectrophotometry for the determination of trace amounts of copper using 5-(2-benzothiazolylazo)-8-hydroxyquinoline
  2. Analysis of spectinomycin in fermentation broth by reversed-phase chromatography
  3. An amperometric sensor for uric acid based on ordered mesoporous carbon-modified pyrolytic graphite electrode
  4. Utility of π-acceptor reagents for spectrophotometric determination of sulphonamide drugs via charge-transfer complex formation
  5. A graph theoretical approach to the effect of mutation on the flexibility of the DNA binding domain of p53 protein
  6. Aquaculture by-product: a source of proteolytic enzymes for detergent additives
  7. Effect of anthraquinone on brightness value and crystalline structure of pulp during soda processes
  8. Selection of a method for determination of activity of pectinolytic enzymes in berry fruit materials
  9. Study on polymeric micelles of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer and its mixtures with poly(γ-benzyl l-glutamate) homopolymer in ethanol
  10. Synthesis and characterization of mesoporous molecular sieves
  11. Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method
  12. Novel use of silicon nanocrystals and nanodiamonds in biology
  13. Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site
  14. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
  15. Study of physicochemical properties-antitubercular activity relationship of naphthalene-1,4-dione analogs: A QSAR approach
  16. Spectroscopic study of protonation of oligonucleotides containing adenine and cytosine
  17. Rheological properties of doughs with buckwheat and quinoa additives
  18. Synthesis and isolation of methyl bismuth cysteine and its definitive identification by high resolution mass spectrometry
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0066-y/html
Scroll to top button