Abstract
Silica sulfuric acid was found to be an efficient, recoverable, reusable and environment-friendly catalyst for the fast hydrolysis of various carboxylic acid esters in high conversions and selectivities under microwave irradiation conditions. This protocol has the advantages of no corrosion, no environmental pollution, high reaction rate, high yield, and simple work-up procedure.
[1] Alizadeh, A., Khodaei, M. M., & Nazari, E. (2007). Silica sulfuric acid as an efficient solid acid catalyst for friedel-crafts acylation using anhydrides. Bulletin of the Korean Chemical Society, 28, 1854–1856. http://dx.doi.org/10.5012/bkcs.2007.28.10.185410.5012/bkcs.2007.28.10.1854Search in Google Scholar
[2] Bazzicalupi, C., Bencini, A., Berni, E., & Vaira, M. D. (2005). Reaction pathways for Zn(II)-catalyzed carboxylic acid esters hydrolysis. Inorganica Chimica Acta, 358, 77–92. DOI: 10.1016/j.ica.2004.07.018. http://dx.doi.org/10.1016/j.ica.2004.07.01810.1016/j.ica.2004.07.018Search in Google Scholar
[3] Bender, M. L. (1960). Mechanisms of catalysis of nucleophilic reactions of carboxylic acid derivatives. Chemical Reviews, 60, 53–113. DOI: 10.1021/cr60203a005. http://dx.doi.org/10.1021/cr60203a00510.1021/cr60203a005Search in Google Scholar
[4] Bentley, T. W., Jurczyk, S., Roberts, K., & Williams, D. J. (1987). Ester hydrolysis in aqueous sulphuric acid effects of solvent ionizing power and nucleophilicity separated from the effects of protonation of substrate. Journal of the Chemical Society, Perkin Transactions 2, 1987, 293–299. DOI: 10.1039/P29870000293. 10.1039/p29870000293Search in Google Scholar
[5] Gershonov, E., Katz, E., Karton, Y., & Zafrani, Y. (2007). Novel synthetic approach in microwave-assisted solid-supported oxidations using ‘in situ’ generated molecular oxygen. Tetrahedron, 63, 3762–3767. DOI: 10.1016/j.tet.2007.02.061. http://dx.doi.org/10.1016/j.tet.2007.02.06110.1016/j.tet.2007.02.061Search in Google Scholar
[6] Kou, X., Cheng, S., Dua, J., Yu, X., & Zeng, X. (2004). Catalytic hydrolysis of carboxylic acid esters by Cu(II) and Zn(II) complexes containing a tetracoordinate macrocyclic Schiff base ligand in Brij35 micellar solution. Journal of Molecular Catalysis A: Chemical, 210, 23–29. DOI: 10.1016/j.molcata.2003.09.004. http://dx.doi.org/10.1016/j.molcata.2003.09.00410.1016/j.molcata.2003.09.004Search in Google Scholar
[7] Li, J. T., Dai, H. G., Xu, W. Z., & Li, T. S. (2006a). Michael addition of indole to α,β-unsaturated ketones catalysed by silica sulfuric acid under ultrasonic irradiation. Journal of Chemical Research-S, 2006, 41–42. 10.3184/030823406776331025Search in Google Scholar
[8] Li, Z., Ding, R. B., Lu, Z., Xiao, S. X., & Ma, X. L. (2006b). Silica sulfate as a recyclable and efficient catalyst for Beckmann rearrangement under microwave irradiation. Journal of Molecular Catalysis A: Chemical, 250, 100–103. DOI: 10.1016/j.molcata.2006.01.056. http://dx.doi.org/10.1016/j.molcata.2006.01.05610.1016/j.molcata.2006.01.056Search in Google Scholar
[9] Ranu, B. C., Dutta, P., & Sarkar, A. (2000). An efficient and general method for ester hydrolysis on the surface of silica gel catalyzed by indium triiodide under microwave irradiation. Synthetic Communications, 30, 4167–4171. DOI: 10.1080/00397910008087033. http://dx.doi.org/10.1080/0039791000808703310.1080/00397910008087033Search in Google Scholar
[10] Salehi, P., Zolfigol, M. A., Shirini, F., & Baghbanzadeh, M. (2006). Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Current Organic Chemistry, 10, 2171–2189. DOI: 10.2174/138527206778742650. http://dx.doi.org/10.2174/13852720677874265010.2174/138527206778742650Search in Google Scholar
[11] Song, C. E., & Lee, S. G. (2002). Supported chiral catalysts on inorganic materials. Chemical Reviews, 102, 3495–3524. DOI: 10.1021/cr0103625. http://dx.doi.org/10.1021/cr010362510.1021/cr0103625Search in Google Scholar
[12] Strazzolini, P., Misuri, N., & Polese, P. (2005). Efficient cleavage of carboxylic tert-butyl and 1-adamantyl esters, and N-Boc-amines using H2SO4 in CH2Cl2. Tetrahedron Letters, 46, 2075–2078. DOI: 10.1016/j.tetlet.2005.01.129. http://dx.doi.org/10.1016/j.tetlet.2005.01.12910.1016/j.tetlet.2005.01.129Search in Google Scholar
[13] Strazzolini, P., Scuccato, M., & Giumanini, A. G. (2000). Deprotection of t-butyl esters of amino acid derivatives by nitric acid in dichloromethane. Tetrahedron, 56, 3625–3633. DOI: 10.1016/S0040-4020(00)00280-5. http://dx.doi.org/10.1016/S0040-4020(00)00280-510.1016/S0040-4020(00)00280-5Search in Google Scholar
[14] Theodorou, V., Skobridis, K., Tzakos, A. G., & Ragoussis, V. (2007). A simple method for the alkaline hydrolysis of esters. Tetrahedron Letters, 48, 8230–8233. DOI: 10.1016/j.tetlet.2007.09.074. http://dx.doi.org/10.1016/j.tetlet.2007.09.07410.1016/j.tetlet.2007.09.074Search in Google Scholar
[15] Wu, H., Shen, Y., Fan, L. Y., Wan, Y., Zhang, P., Chen, C. F., & Wang, W. X. (2007). Stereoselective synthesis of β-amino ketones via direct Mannich-type reaction catalyzed with silica sulfuric acid. Tetrahedron, 63, 2404–2408. DOI: 10.1016/j.tet.2007.01.015. http://dx.doi.org/10.1016/j.tet.2007.01.01510.1016/j.tet.2007.01.015Search in Google Scholar
[16] Xu, Q. C., Lin, J. D., Li, J., Fu, X. Z., Liang, Y., & Liao, D. W. (2007). Microwave-assisted synthesis of MgO-CNTs supported ruthenium catalysts for ammonia synthesis. Catalysis Communications, 8, 1881–1885. DOI: 10.1016/j.catcom.2007.03.002. http://dx.doi.org/10.1016/j.catcom.2007.03.00210.1016/j.catcom.2007.03.002Search in Google Scholar
[17] Yadav, J. S., Balanarsaiah, E., Raghavendra, S., & Satyanarayana, M. (2006). Chemoselective hydrolysis of tert-butyl esters in acetonitrile using molecular iodine as a mild and efficient catalyst. Tetrahedron Letters, 47, 4921–4924. DOI: 10.1016/j.tetlet.2006.05.011. http://dx.doi.org/10.1016/j.tetlet.2006.05.01110.1016/j.tetlet.2006.05.011Search in Google Scholar
[18] Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/S0040-4020(01)00960-7. http://dx.doi.org/10.1016/S0040-4020(01)00960-710.1016/S0040-4020(01)00960-7Search in Google Scholar
© 2008 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Investigation of 3-amino-1,2,4-triazole azodye derivatives as reagents for determination of mercury(II)
- Electrospray ionization mass spectra of pentoses, hexoses, and 2-deoxy-2-fluoro-d-glucose
- Influence of solution composition and iron powder characteristics on reduction of 2,4,6-trinitrophenol
- Electrochemical behaviour of lanthanum fluoride in molten fluorides
- Structural and electronic effects involving pyridine rings in 4-methylpyridine Cu4OX6L4 complexes. II. Correlations based on molecular structure of the Cu4OCl6(4-Mepy)4 complex
- Photoswitching of a heptanuclear FeII-FeIII complex — A case of multifunctional magnetic materials
- Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications
- Synthesis of macrocyclic polyethers and polyether diesters and preparation of their cationic complexes
- Prediction of anti-HIV activity and cytotoxicity of pyrimidinyl and triazinyl amines: A QSAR study
- Composition of the essential oil of Geocaryum cynapioides (Guss.) L. Engstrand
- Photolytic degradation of triclosan in the presence of surfactants
- Determination of dissociation degrees of K3NbF8 and K3TaF8 by thermodynamic analysis of subsystems of the KF-K2NbF7 and KF-K2TaF7 systems
- DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers
- Silica sulfuric acid-catalyzed expeditious environment-friendly hydrolysis of carboxylic acid esters under microwave irradiation
- Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase
Articles in the same Issue
- Investigation of 3-amino-1,2,4-triazole azodye derivatives as reagents for determination of mercury(II)
- Electrospray ionization mass spectra of pentoses, hexoses, and 2-deoxy-2-fluoro-d-glucose
- Influence of solution composition and iron powder characteristics on reduction of 2,4,6-trinitrophenol
- Electrochemical behaviour of lanthanum fluoride in molten fluorides
- Structural and electronic effects involving pyridine rings in 4-methylpyridine Cu4OX6L4 complexes. II. Correlations based on molecular structure of the Cu4OCl6(4-Mepy)4 complex
- Photoswitching of a heptanuclear FeII-FeIII complex — A case of multifunctional magnetic materials
- Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications
- Synthesis of macrocyclic polyethers and polyether diesters and preparation of their cationic complexes
- Prediction of anti-HIV activity and cytotoxicity of pyrimidinyl and triazinyl amines: A QSAR study
- Composition of the essential oil of Geocaryum cynapioides (Guss.) L. Engstrand
- Photolytic degradation of triclosan in the presence of surfactants
- Determination of dissociation degrees of K3NbF8 and K3TaF8 by thermodynamic analysis of subsystems of the KF-K2NbF7 and KF-K2TaF7 systems
- DFT-based quantum theory QSPR studies of molar heat capacity and molar polarization of vinyl polymers
- Silica sulfuric acid-catalyzed expeditious environment-friendly hydrolysis of carboxylic acid esters under microwave irradiation
- Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase