Home Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta area
Article
Licensed
Unlicensed Requires Authentication

Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta area

  • T. Frentiu EMAIL logo , S. Vlad , M. Ponta , C. Baciu , I. Kasler and E. Cordos
Published/Copyright: June 1, 2007
Become an author with De Gruyter Brill

Abstract

The profile distribution of arsenic(III) and arsenic(V) species in soil and groundwater was investigated in the samples collected in 2005 from a hand-drilled well, in the Bozanta area, Baia Mare region, Romania. The total content of arsenic in the soil was in the range of 525–672 mg kg−1 exceeding 21–27 times the action trigger level for sensitive soil. 0.9–11.3 % of the total content was soluble in water, 83.0–92.6 % in 10 mol dm−3 HCl and 2.6–13.3 % was the residual fraction. Arsenic(V) was the dominant arsenic species in the soil in the range of 405–580 mg kg−1. The distribution and mobility of arsenic species was governed by soil pH and contents of Al, Fe, and Mn. The mobility of arsenic(V) decreased with depth, while that of arsenic(III) was high at the surface and in the proximity of groundwater. The total concentration of arsenic in groundwater was (43.40 ± 1.70) µg dm−3, which exceeded the maximum contaminant level of 10 µg dm−3.

[1] Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M., and Klinck, B. A., in Treatise on Geochemistry, Vol. 9 Environmental Geochemistry (Holland, H. D. and Turekian, K. K., Editors), p. 17. Elsevier/Pergamon, Amsterdam, 2004. 10.1016/B0-08-043751-6/09047-2Search in Google Scholar

[2] Kinniburgh, D. G., Smedley, P. L., Trafford, J. M., Milne, C. J., Huq, S. M. I., Ahmed, K. M., and Burden, S., in Arsenic Contamination of Groundwater in Bangladesh, Vol. 2 (Kinniburgh, D. G. and Smedley, P. L., Editors), p. 77. British Geological Survey Report WC/00/19, Keyworth, 2001. http://www.bgs.ac.uk/arsenic/Bangladesh Search in Google Scholar

[3] Welch, A. H., Westjohn, D. B., Helsel, D. R., and Wanty, R. B., Ground Water 38, 589 (2000). http://dx.doi.org/10.1111/j.1745-6584.2000.tb00251.x10.1111/j.1745-6584.2000.tb00251.xSearch in Google Scholar

[4] Smedley, P. L. and Kinniburgh, D. G., Appl. Geochem. 17, 517 (2002). http://dx.doi.org/10.1016/S0883-2927(02)00018-510.1016/S0883-2927(02)00018-5Search in Google Scholar

[5] Varsanyi, I., Fodor, Z., and Bartha, A., Environ. Geochem. Health 13, 14 (1991). http://dx.doi.org/10.1007/BF0178349110.1007/BF01783491Search in Google Scholar

[6] Gurzau, E. S. and Gurzau, A. E., in Arsenic Exposure and Health Effects IV (Chappel, W. R., Abernathy, C. O., and Calderon, R. L., Editors), p. 181. Elsevier, Amsterdam, 2001. Search in Google Scholar

[7] Chen, S. L., Yeh, S. J., Yang, M. H., and Lin, T. H., Biol. Trace Elem. Res. 48, 263 (1995). http://dx.doi.org/10.1007/BF0278940810.1007/BF02789408Search in Google Scholar

[8] Kinniburgh, D. G. and Kosmus, W., Talanta 58, 165 (2002). http://dx.doi.org/10.1016/S0039-9140(02)00265-510.1016/S0039-9140(02)00265-5Search in Google Scholar

[9] Ko, I., Ahn, J. S., Park, Y. S., and Kim, K. W., Chem. Speciation Bioavailability 15, 67 (2003). 10.3184/095422903782775217Search in Google Scholar

[10] Cappuyns, V., van Herreweghe, S., Swennen, R., Ottenburgs, R., and Deckers, J., Sci. Total Environ. 295, 217 (2002). http://dx.doi.org/10.1016/S0048-9697(02)00096-710.1016/S0048-9697(02)00096-7Search in Google Scholar

[11] Cordos, E. A., Frentiu, T., Ponta, M., Marginean, I., Abraham, B., and Roman, C., Chem. Speciation Bioavailability 18, 11 (2006). 10.3184/095422906782146294Search in Google Scholar

[12] Cordos, E. A., Rautiu, R., Roman, C., Ponta, M., Frentiu, T., Sarkany, A., Fodorpataki, L., Macalik, K., McCormick, C., and Weiss, D., Eur. J. Miner. Process. Environ. Prot. 3, 324 (2003). Search in Google Scholar

[13] Roman, C., Cordos, E. A., Ponta, M., Viman, V., and Vogt, A., in Gold Extraction in Central and Eastern Europe and the Commonwealth of Independent States (Ranft, U., Pesch, B., and Vogt, A., Editors), p. 49. Jagellonian University Press, Krakow, 2005. Search in Google Scholar

[14] Cordos, E. A., Frentiu, T., Rusu, A. M., and Vatca, G., Analyst 120, 725 (1995). http://dx.doi.org/10.1039/an995200072510.1039/an9952000725Search in Google Scholar

[15] Cordos, E. A., Frentiu, T., Ponta, M., Abraham, B., and Marginean, I., Chem. Speciation Bioavailability 18, 1 (2006). 10.3184/095422906782146294Search in Google Scholar

[16] Rieuwerts, J. S., Thornton, I., Farago, M. E., and Ashmore, M. R., Chem. Speciation Bioavailability 10, 61 (1998). 10.3184/095422998782775835Search in Google Scholar

[17] Scott, M. J. and Morgan, J. J., Environ. Sci. Technol. 29, 1898 (1995). http://dx.doi.org/10.1021/es00008a00610.1021/es00008a006Search in Google Scholar PubMed

[18] Quevauvillier, P., Method Performance Studies for Speciation Analysis, p. 218. The Royal Society of Chemistry, Thomas Graham House, Cambridge, 1998. 10.1039/9781847551405Search in Google Scholar

[19] Hingston, F. J., Posner, A. M., and Quick, J. P., Faraday Soc. 52, 334 (1971). http://dx.doi.org/10.1039/df971520033410.1039/df9715200334Search in Google Scholar

[20] Pierce, M. L. and Moore, C. B., Environ. Sci. Technol. 14, 214 (1980). http://dx.doi.org/10.1021/es60162a01110.1021/es60162a011Search in Google Scholar

[21] McLean, J. E. and Bledsoe, B. E., in EPA Ground Water Issue EPA/540/S-92/018, 1992. Search in Google Scholar

Published Online: 2007-6-1
Published in Print: 2007-6-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0018-3/html
Scroll to top button