Home High-performance corrosion resistance of plasma-deposited thin C:H:N films onto carbon steel alloys in an acidic medium
Article
Licensed
Unlicensed Requires Authentication

High-performance corrosion resistance of plasma-deposited thin C:H:N films onto carbon steel alloys in an acidic medium

  • Alaa Fahmy ORCID logo EMAIL logo , Safwat Hassaballa , Abdullah A. Moustafa ORCID logo EMAIL logo and Mahmoud A. Bedair
Published/Copyright: September 23, 2025

Abstract

Nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) films were synthesized via plasma-activated chemical vapor deposition (PACVD) using a capacitively coupled RF plasma (RF-CCP) source to address the critical challenge of carbon steel corrosion in acidic environments. This study is motivated by the urgent need to replace toxic corrosion inhibitors and improve upon conventional nitriding methods that typically offer <80 % protection in hydrochloric acid. We systematically investigated the effects of plasma power (400–700 W), treatment time (5–20 min), and N2/C2H2 gas ratios (0–100 % N2) on film properties and corrosion resistance in 1.0 M HCl. Electrochemical measurements revealed exceptional corrosion inhibition efficiencies (IE %) of 99.3 % for C2H2-derived films and 99.1 % for N2/C2H2 (75/25 %) mixtures – the highest reported values for plasma-treated steel in acidic media. Tafel analysis showed these films preferentially inhibit anodic reactions, reducing corrosion current density from 400 μA/cm2 (untreated steel) to just 2.7 μA/cm2. Surface characterization demonstrated that optimal films combine a hydrophobic carbon matrix (30.23 at.% C by EDX) with nitrogen functionalities (0.68 at.% N), forming a nanostructured barrier that resists acid penetration (SEM). The 700 W, 20 min N2 treatment achieved 97.7 % IE %, while shorter 10 min treatments maintained 97.6 % efficiency, suggesting energy-saving potential. These results establish that a-C:H:N films deposited at room temperature can provide near-complete corrosion protection through two mechanisms: (1) C–H network formation at high power and (2) synergistic N-doping that enhances passivation. The study provides a scalable, environmentally friendly alternative to conventional coatings for industrial applications involving acid exposure, with quantified performance benchmarks that surpass existing plasma-based methods.


Corresponding authors: Alaa Fahmy, Petrochemicals Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt; and Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany, E-mail: ; and Abdullah A. Moustafa, General Manager of Technical Management and Technical Consultant for General Force Battery Manufacturing Company, El Salhiya, Al Sharqia, Egypt, E-mail:

Acknowledgement

The authors are thankful to the Deanship of Graduate Studies and Scientific Research at the University of Bisha for supporting this work through the Fast-Track Research Support Program.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  6. Research funding: None declared.

  7. Data availability: The data supporting this article have been included in the publication.

References

1. VDI Guide Line 2840, Carbon Films - Basic Knowledge, Film Types and Properties, VDI 2840:2023-03; Beuth Verlag GmbH: Berlin, Germany.Search in Google Scholar

2. Schwan, J.; Dworschak, W.; Jung, K.; Ehrhardt, H. Microstructures and Mechanical Properties of Amorphous Hydrogenated Carbon-Nitrogen Films, Diam. Relat. Mater. 1994, 3, 1034–1039. https://doi.org/10.1016/0925-9635(94)90114-7.Search in Google Scholar

3. Lazar, G.; Lazar, I. IR Characterization of a-C:H:N Films Sputtered in Ar/CH4/N2 Plasma, J. Non. Cryst. Solids 2003, 331, 70–78. https://doi.org/10.1016/j.jnoncrysol.2003.09.004.Search in Google Scholar

4. Hegemann, D.; Hossain, M. M.; Balazs, D. J. Nanostructured Plasma Coatings to Obtain Multifunctional Textile Surfaces, Prog. Org. Coatings 2007, 58, 237–240. https://doi.org/10.1016/j.porgcoat.2006.08.027.Search in Google Scholar

5. Lacerda, M. M.; Franceschini, D. F.; Freire, F. L.; Mariotto, G. Hard a-C(N):H Films Obtained from Plasma Decomposition of Methylamine-Containing Mixtures, Diam. Relat. Mater. 1997, 6, 631–634. https://doi.org/10.1016/S0925-9635(96)00749-2.Search in Google Scholar

6. Tanaka, Y.; Furuta, M.; Kuriyama, K.; Kuwabara, R.; Katsuki, Y.; Kondo, T.; Fujishima, A.; Honda, K. Electrochemical Properties of N-Doped Hydrogenated Amorphous Carbon Films Fabricated by Plasma-Enhanced Chemical Vapor Deposition Methods, Electrochim. Acta 2011, 56, 1172–1181. https://doi.org/10.1016/j.electacta.2010.11.006.Search in Google Scholar

7. Schwan, J.; Batori, V.; Ulrich, S.; Ehrhardt, H.; Silva, S. R. P. Nitrogen Doping of Amorphous Carbon Thin Films. J. Appl. Phys. 1998, 84, 2071–2081. https://doi.org/10.1063/1.368268.Search in Google Scholar

8. Broitman, E.; Hellgren, N.; Neidhardt, J.; Brunell, I.; Hultman, L. Electrical Properties of Carbon Nitride Thin Films: Role of Morphology and Hydrogen Content. J. Electron. Mater. 2002, 31, L11–L15. https://doi.org/10.1007/s11664-002-0190-8.Search in Google Scholar

9. Ghadai, R. K.; Das, S.; Mondal, S. C.; Swain, B. P. Investigation of Structural and Electronic Environments of Nitrogen-Doped CVD-Grown DLC Films. In Advances in Electronics, Communication and Computing (ETAEERE-2016), Lecture Notes in Electrical Engineering; Springer Nature Singapore: Singapore, 2018; pp 301–306.10.1007/978-981-10-4765-7_31Search in Google Scholar

10. Menegazzo, N.; Kahn, M.; Berghauser, R.; Waldhauser, W.; Mizaikoff, B. Nitrogen-Doped Diamond-like Carbon as Optically Transparent Electrode for Infrared Attenuated Total Reflection Spectroelectrochemistry. Analyst 2011, 136, 1831–1839; https://doi.org/10.1039/c0an00503g.Search in Google Scholar PubMed

11. Chen, H.; Zhuge, F.; Fu, B.; Li, J.; Wang, J.; Wang, W.; Wang, Q.; Li, L.; Li, F.; Zhang, H.; Liang, L.; Luo, H.; Wang, M.; Gao, J.; Cao, H.; Li, Z. Others, Forming-free Resistive Switching in a Nanoporous Nitrogen-Doped Carbon Thin Film with Ready-Made Metal Nanofilaments. Carbon N. Y. 2014, 76, 459–463; https://doi.org/10.1016/j.carbon.2014.04.091.Search in Google Scholar

12. Wang, S. -F.; Rao, K. K.; Yang, T. C. K.; Wang, H. -P. Investigation of Nitrogen Doped Diamond like Carbon Films as Counter Electrodes in Dye Sensitized Solar Cells. J. Alloys Compd. 2011, 509, 1969–1974; https://doi.org/10.1016/j.jallcom.2010.10.103.Search in Google Scholar

13. Ouyang, L.; Cao, Z.; Wang, H.; Hu, R.; Zhu, M. Application of Dielectric Barrier Discharge Plasma-Assisted Milling in Energy Storage Materials – a Review. J. Alloys Compd. 2017, 691, 422–435; https://doi.org/10.1016/j.jallcom.2016.08.179.Search in Google Scholar

14. Fahmy, A.; Debarnot, D.; Friedrich, J. Influence of Water Addition on the Structure of Plasma-Deposited Allyl Alcohol Polymer Films. J. Adhes. Sci. Technol. 2015, 29, 965–980; https://doi.org/10.1080/01694243.2015.1011367.Search in Google Scholar

15. Zhou, K.; Ke, P.; Li, X.; Zou, Y.; Wang, A. Microstructure and Electrochemical Properties of Nitrogen-Doped DLC Films Deposited by PECVD Technique. Appl. Surf. Sci. 2015, 329, 281–286; https://doi.org/10.1016/j.apsusc.2014.12.162.Search in Google Scholar

16. Khelifa, F.; Ershov, S.; Habibi, Y.; Snyders, R.; Dubois, P. Free-Radical-Induced Grafting from Plasma Polymer Surfaces. Chem. Rev. 2016, 116, 3975–4005; https://doi.org/10.1021/acs.chemrev.5b00634.Search in Google Scholar PubMed

17. Fahmy, A.; Schönhals, A.; Friedrich, J. Reaction of Water with (Radicals in) Plasma Polymerized Allyl Alcohol (And Formation of OH-rich Polymer Layers). J. Phys. Chem. B 2013, 117, 10603–10611; https://doi.org/10.1021/jp406186x.Search in Google Scholar PubMed

18. Rincón, R.; Hendaoui, A.; De Matos, J.; Chaker, M. Synthesis of Flat Sticky Hydrophobic Carbon Diamond-like Films Using Atmospheric Pressure Ar/CH4 Dielectric Barrier Discharge. J. Appl. Phys. 2016, 119; https://doi.org/10.1063/1.4953684.Search in Google Scholar

19. Fenker, M.; Julin, J.; Petrikowski, K.; Richter, A. Physical and Electrical Properties of Nitrogen-Doped Hydrogenated Amorphous Carbon Films. Vacuum 2019, 162, 8–14; https://doi.org/10.1016/j.vacuum.2019.01.018.Search in Google Scholar

20. Hegemann, D. Controlling the Nanostructure and Stability of aC: H: N Plasma Polymers. Thin Solid Films 2015, 581, 2–6; https://doi.org/10.1016/j.tsf.2014.11.087.Search in Google Scholar

21. Fahmy, A.; Mohamed, T. A.; Schönhals, A. Structure of Plasma Poly (Acrylic Acid): Influence of Pressure and Dielectric Properties. Plasma Chem. Plasma Process. 2015, 35, 303–320; https://doi.org/10.1007/s11090-014-9603-8.Search in Google Scholar

22. Hashmi, M. S. J. Comprehensive Materials processing; Newnes (Elsevier): Oxford, U.K., 2014.Search in Google Scholar

23. Vandencasteele, N.; Reniers, F. Plasma-modified Polymer Surfaces: Characterization Using XPS, J. Electron Spectros. Relat. Phenomena 2010, 178–179, 394–408. https://doi.org/10.1016/j.elspec.2009.12.003.Search in Google Scholar

24. Biederman, H.; Kudrna, P.; Slavinska, D. Hard Plasma Polymers, Composites and Plasma Polymer Films Prepared by Rf Sputtering of Conventional Polymers. Plasma Polym. Film 2004, 289–324. https://doi.org/10.1142/9781860945380_0009.Search in Google Scholar

25. Kylián, O.; Choukourov, A.; Biederman, H. Nanostructured Plasma Polymers. Thin Solid Films 2013, 548, 1–17; https://doi.org/10.1016/j.tsf.2013.09.003.Search in Google Scholar

26. Fahmy, A.; Mix, R.; Schönhals, A.; Friedrich, J. F. Structure – Property Relationship of Thin Plasma Deposited Poly (Allyl Alcohol) Films. Plasma Chem. Plasma Process. 2011, 31, 477–498; https://doi.org/10.1007/s11090-011-9297-0.Search in Google Scholar

27. Milella, A.; Di Mundo, R.; Palumbo, F.; Favia, P.; Fracassi, F.; d’Agostino, R. Plasma Nanostructuring of Polymers: Different Routes to Superhydrophobicity. Plasma Process. Polym. 2009, 6, 460–466; https://doi.org/10.1002/ppap.200930011.Search in Google Scholar

28. Nilkar, M.; Ghodsi, F. E.; Jafari, S.; Thiry, D.; Snyders, R. Effects of Nitrogen Incorporation on N-Doped DLC Thin Film Electrodes Fabricated by Dielectric Barrier Discharge Plasma: Structural Evolution and Electrochemical Performances. J. Alloys Compd. 2021, 853, 157298; https://doi.org/10.1016/j.jallcom.2020.157298.Search in Google Scholar

29. Gangan, A.; ElSabbagh, M.; Bedair, M. A.; Ahmed, H. M.; El-Sabbah, M.; El-Bahy, S. M.; Fahmy, A. Influence of pH Values on the Electrochemical Performance of Low Carbon Steel Coated by Plasma Thin SiO C Films. Arab. J. Chem. 2021, 14, 103391. https://doi.org/10.1016/j.arabjc.2021.103391.Search in Google Scholar

30. Fahmy, A.; El Sabbagh, M.; Bedair, M.; Gangan, A.; El-Sabbah, M.; El-Bahy, S. M.; Friedrich, J. F. One-Step Plasma Deposited Thin SiO X C Y Films for Corrosion Resistance of Low Carbon Steel. J. Adhes. Sci. Technol. 2021, 35, 1734–1751. https://doi.org/10.1080/01694243.2020.1856539.Search in Google Scholar

31. Gangan, A.; ElSabbagh, M.; Bedair, M.; El-Sabbah, M.; Fahmy, A. Plasma Power Impact on Electrochemical Performance of Low Carbon Steel Coated by Plasma Thin Teos Films. Al-Azhar Bull. Sci. 2020, 31, 51–58. https://doi.org/10.21608/absb.2020.111474.Search in Google Scholar

32. Jiao, W.-C.; Li, H.-B.; Dai, J.; Feng, H.; Jiang, Z.-H.; Zhang, T.; Xu, D.-K.; Zhu, H.-C.; Zhang, S.-C. Effect of Partial Replacement of Carbon by Nitrogen on Intergranular Corrosion Behavior of High Nitrogen Martensitic Stainless Steels. J. Mater. Sci. Technol. 2019, 35(10), 2357–2364. https://doi.org/10.1016/j.jmst.2019.06.004.Search in Google Scholar

33. Tamimi, M. F.; Shehadeh, A.; Alshboul, O.; Amaeyrh, K.; Taani, G.; Tamimi, S.; Faris, M.; Hazaimeh, E.; Al-Zboun, A.; Nawafleh, M. Managing Green and Sustainable Technologies: Climate-Informed Corrosion Prediction for Steel Structures. Civ. Eng. J. 2024, 10, 2677–2697. https://doi.org/10.28991/CEJ-2024-010-08-016.Search in Google Scholar

34. Tamimi, M. F.; Alshannaq, A. A.; AbuQamar, M. I. Deterioration of Steel Structures Due to Corrosion Considering the Global Effects of Climate Change. Corros. Eng. Sci. Technol. 2024, 59, 273–293. https://doi.org/10.1177/1478422X241241389.Search in Google Scholar

35. Encinas-Sánchez, V.; de Miguel, M. T.; Lasanta, M. I.; García-Martín, G.; Pérez, F. J. Electrochemical Impedance Spectroscopy (EIS): An Efficient Technique for Monitoring Corrosion Processes in Molten Salt Environments in CSP Applications, Sol. Energy Mater. Sol. Cells 2019, 191, 157–163. https://doi.org/10.1016/j.solmat.2018.11.007.Search in Google Scholar

36. Elaryian, H. M.; Bedair, M. A.; Bedair, A. H.; Aboushahba, R. M.; Fouda, A. E. -A. S. Corrosion Mitigation for Steel in Acid Environment Using Novel P-Phenylenediamine and Benzidine Coumarin Derivatives: Synthesis{,} Electrochemical{,} Computational and SRB Biological Resistivity. RSC Adv. 2022, 12, 29350–29374. https://doi.org/10.1039/D2RA05803K.Search in Google Scholar

37. Bedair, M. A.; Abuelela, A. M.; Zoghaib, W. M.; Mohamed, T. A. Molecular Structure, Tautomer’s, Reactivity and Inhibition Studies on 6-Methyl-2-Thiouracil for Mild Steel Corrosion in Aqueous HCl (1.00 M): Experimental and Theoretical Studies. J. Mol. Struct. 2021, 1244, 130927. https://doi.org/10.1016/j.molstruc.2021.130927.Search in Google Scholar

38. Alarfaji, S. S.; Ali, I. H.; Bani-Fwaz, M. Z.; Bedair, M. A. Synthesis and Assessment of Two Malonyl Dihydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Theoretical Studies. Molecules 2021, 26, 3183. https://doi.org/10.3390/molecules26113183.Search in Google Scholar PubMed PubMed Central

39. Yousif, Q. A.; Bedair, M. A.; Abuelela, A. M.; Al-odail, F.; Ansari, A.; Fadel, Z. Theoretical and Experimental Aspects of Novel Penicillanic Acid Compounds as Corrosion Inhibitors in Acidic Solutions. Mater. Today Commun. 2025, 47, 113199. https://doi.org/10.1016/j.mtcomm.2025.113199.Search in Google Scholar

40. Bedair, M. A. A Novel Coumarin-Azo Schiff Base for Dual Corrosion Inhibition for Steel in Acidic Environments and Anti-SRB Protection: Experimental and Computational Insights. Results Surf. Interfaces 2025, 19, 100511. https://doi.org/10.1016/j.rsurfi.2025.100511.Search in Google Scholar

41. Hajjaji, F. E. L.; Salim, R.; Ech-chihbi, E.; Titi, A.; Messali, M.; Kaya, S.; El Ibrahimi, B.; Taleb, M. New Imidazolium Ionic Liquids as Ecofriendly Corrosion Inhibitors for Mild Steel in Hydrochloric Acid (1 M): Experimental and Theoretical Approach, J. Taiwan Inst. Chem. Eng. 2021, 123, 346–362. https://doi.org/10.1016/j.jtice.2021.05.005.Search in Google Scholar

42. Abbas, M. A.; Arafa, E. I.; Bedair, M. A.; Ismail, A. S.; El-Azabawy, O. E.; Baker, S. A.; Al-Shafey, H. I. Synthesis, Characterization, Thermodynamic Analysis and Quantum Chemical Approach of Branched N, N′-bis(p-hydroxybenzoyl)-Based Propanediamine and Triethylenetetramine for Carbon Steel Corrosion Inhibition in Hydrochloric Acid Medium. Arab. J. Sci. Eng. 2023, 48, 7463–7484. https://doi.org/10.1007/s13369-022-07520-y.Search in Google Scholar

43. Al Saadi, S.; Yi, Y.; Cho, P.; Jang, C.; Beeley, P. Passivity Breakdown of 316L Stainless Steel during Potentiodynamic Polarization in NaCl Solution. Corros. Sci. 2016, 111, 720–727; https://doi.org/10.1016/j.corsci.2016.06.011.Search in Google Scholar

44. Bedair, M. A.; Elaryian, H. M.; Bedair, A. H.; Aboushahba, R. M.; El-Aziz, A.; Fouda, S. Novel Coumarin-Buta-1,3-Diene Conjugated Donor–Acceptor Systems as Corrosion Inhibitors for Mild Steel in 1.0 M HCl: Synthesis, Electrochemical, Computational and SRB Biological Resistivity, Inorg. Chem. Commun. 2023, 148, 110304. https://doi.org/10.1016/j.inoche.2022.110304.Search in Google Scholar

45. Bedair, M. A.; Yousif, Q. A.; Fadel, Z.; Melhi, S.; Al-Odail, F. A.; Abuelela, A. M. Experimental and Theoretical Analyses of the Corrosion Inhibition Efficacy of New Penicillanic Acid Derivatives for Carbon Steel in Hydrochloric Acid Environment. J. Mol. Struct. 2025, 1328, 141282. https://doi.org/10.1016/j.molstruc.2024.141282.Search in Google Scholar

46. El-Sabbah, M. M. B.; Bedair, M. A.; Abbas, M. A.; Fahmy, A.; Hassaballa, S.; Moustafa, A. A. Synergistic Effect between Natural Honey and 0.1 M KI as Green Corrosion Inhibitor for Steel in Acid Medium. Z. Phys. Chem. 2019, 233, 627–649; https://doi.org/10.1515/zpch-2018-1208.Search in Google Scholar

47. Abuelela, A. M.; Kaur, J.; Saxena, A.; Bedair, M. A.; Verma, D. K.; Berdimurodov, E. Electrochemical and DFT Studies of Terminalia Bellerica Fruit Extract as an Eco-Friendly Inhibitor for the Corrosion of Steel. Sci. Rep. 2023, 13, 19367. https://doi.org/10.1038/s41598-023-45283-0.Search in Google Scholar PubMed PubMed Central

48. Gad, E. S.; Abbas, M. A.; Bedair, M. A.; El-Azabawy, O. E.; Mukhtar, S. M. Synthesis and Applications of Novel Schiff Base Derivatives as Corrosion Inhibitors and Additives for Improvement of Reinforced Concrete. Sci. Rep. 2023, 13, 15091. https://doi.org/10.1038/s41598-023-41165-7.Search in Google Scholar PubMed PubMed Central

49. Miftakhov, E.; Mustafina, S.; Kashnikova, A.; Akimov, A. Development of a Cloud Service for Comprehensive Research of Polymer Synthesis Processes. Emerg. Sci. J 2024, 8, 2539–2553. https://doi.org/10.28991/ESJ-2024-08-06-023.Search in Google Scholar

50. Rakhadilov, B.; Kussainov, R.; Kalitova, A.; Satbayeva, Z.; Shynarbek, A. The Impact of Technological Parameters of Electrolytic-Plasma Treatment on the Changes in the Mechano-Tribological Properties of Steel 45. AIMS Mater. Sci. 2024, 11, 666–683. https://doi.org/10.3934/MATERSCI.2024034.Search in Google Scholar

51. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: New York, NY, USA, 2017.10.1007/978-1-4939-6676-9Search in Google Scholar

52. Yousif, Q. A.; Bedair, M. A.; Fadel, Z.; Al-Odail, F.; Abuelela, A. M. Evaluating the Efficacy of Newly Synthesized Amino Acid Derivatives as Corrosion Inhibitors in Acidic Solutions. Inorg. Chem. Commun. 2024, 164, 112454. https://doi.org/10.1016/j.inoche.2024.112454.Search in Google Scholar

53. Bedair, M. A.; Abuelela, A. M.; Alshareef, M.; Owda, M.; Eliwa, E. M. Ethyl Ester/Acyl Hydrazide-Based Aromatic Sulfonamides: Facile Synthesis, Structural Characterization, Electrochemical Measurements and Theoretical Studies as Effective Corrosion Inhibitors for Mild Steel in 1.0 M HCl. RSC Adv. 2023, 13, 186–211. https://doi.org/10.1039/D2RA05939H.Search in Google Scholar PubMed PubMed Central

54. Bedair, M. A.; Abuelela, A. M.; Melhi, S.; Yousif, Q. A.; Chaban, V. V.; Alosaimi, E. H. Highly Effective Inhibition of Steel Corrosion in 1.0 M HCl Solution Using a Novel Non-ionic Surfactant with Coumarin Moiety: Practical and Computational Studies. Mater. Chem. Phys. 2024, 312, 128644. https://doi.org/10.1016/j.matchemphys.2023.128644.Search in Google Scholar

55. Grandić, D.; Štimac Grandić, I.; Šćulac, P. Assessment of Mechanical Properties of Corroded Reinforcement in Chloride Environment Based on Corrosion Rate Monitoring. Civ. Eng. J. 2024, 10, 3473–3492. https://doi.org/10.28991/CEJ-2024-010-11-02.Search in Google Scholar

56. Moustafa, A. A.; Ashmawy, A. M.; Ghayad, I. M.; El-Zomrawy, A. A.; Abdelbasir, S. M. Novel Imidazole-Based, Ionic Liquid: Synthetics Linked to Enhancing the Life Cycle of Lead-Acid Batteries. J. Energy Storage 2022, 56, 105932. https://doi.org/10.1016/j.est.2022.105932.Search in Google Scholar

57. Li, C. X.; Bell, T. Corrosion Properties of Plasma Nitrided AISI 410 Martensitic Stainless Steel in 3.5\% NaCl and 1\% HCl Aqueous Solutions. Corros. Sci. 2006, 48, 2036–2049; https://doi.org/10.1016/j.corsci.2005.08.011.Search in Google Scholar

58. Fahmy, A.; Schönhals, A. Reaction of CO2 Gas with (Radicals in) Plasma-Polymerized Acrylic Acid (And Formation of COOH-Rich Polymer Layers). Plasma Process. Polym. 2016, 13, 499–508; https://doi.org/10.1002/ppap.201500128.Search in Google Scholar

59. Fahmy, A.; Friedrich, J.; Poncin-Epaillard, F.; Debarnot, D. Plasma Polymerized Allyl alcohol/O2 Thin Films Embedded with Silver Nanoparticles. Thin Solid Films 2016, 616, 339–347; https://doi.org/10.1016/j.tsf.2016.08.045.Search in Google Scholar

60. Fahmy, A.; Agudo Jácome, L.; Schönhals, A. Effect of Silver Nanoparticles on the Dielectric Properties and the Homogeneity of Plasma Poly (Acrylic Acid) Thin Films. J. Phys. Chem. C 2020, 124, 22817–22826; https://doi.org/10.1021/acs.jpcc.0c06712.Search in Google Scholar

61. Ghali, N.; Addou, A.; Mutel, B.; Benstaali, B.; Bentiss, F.; Brisset, J. -L. Corrosion Inhibition of Carbon Steel in 0.5 M NaCl Aqueous Solution by Humid Air Plasma Treatment. Eur. Phys. Journal-Applied Phys. 2013, 61, 30801; https://doi.org/10.1051/epjap/2012120130.Search in Google Scholar

62. Bedair, M. A.; Elaryian, H. M.; Gad, E. S.; Alshareef, M.; Bedair, A. H.; Aboushahba, R. M.; Fouda, A. E. -A. S. A. S. Insights into the Adsorption and Corrosion Inhibition Properties of Newly Synthesized Diazinyl Derivatives for Mild Steel in Hydrochloric Acid: Synthesis, Electrochemical, SRB Biological Resistivity and Quantum Chemical Calculations. RSC Adv. 2023, 13, 478–498. https://doi.org/10.1039/D2RA06574F.Search in Google Scholar PubMed PubMed Central

63. Bedair, M. A.; Alosaimi, E. H.; Melhi, S. A Study of the Inhibitive Effect for Corrosion of Steel in 1.0 M HCl Using a New Nonionic Surfactant Based on Coumarin Moiety: Chemical, Electrochemical and Quantum Mechanics Calculations. J. Adhes. Sci. Technol. 2021, 37, 1–31. https://doi.org/10.1080/01694243.2021.2018864.Search in Google Scholar

64. Bedair, M.; Metwally, M.; Soliman, S.; Al-Sabagh, A.; Salem, A.; Mohamed, T. Extracts of Mint and Tea as Green Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Al-Azhar Bull. Sci. 2015, 26, 1–14. https://doi.org/10.21608/absb.2015.23766.Search in Google Scholar

65. Yousif, Q. A.; Fadel, Z.; Abuelela, A. M.; Alosaimi, E. H.; Melhi, S.; Bedair, M. A. Insight into the Corrosion Mitigation Performance of Three Novel Benzimidazole Derivatives of Amino Acids for Carbon Steel (X56) in 1 M HCl Solution. RSC Adv. 2023, 13, 13094–13119. https://doi.org/10.1039/D3RA01837G.Search in Google Scholar

66. Abbas, M. A. M. A.; Bedair, M. A. M. A. M. A. Adsorption and Computational Studies for Evaluating the Behavior of Silicon Based Compounds as Novel Corrosion Inhibitors of Carbon Steel Surfaces in Acidic Media. Z. Phys. Chem. 2019, 233, 225–254; https://doi.org/10.1515/zpch-2018-1159.Search in Google Scholar

67. Ghorbani, A.; Sadighzadeh, A.; Seifi, M.; Kiai, S. M. S.; Raeisdana, A. Amorphous Hydrogenated Carbon Thin Films Deposited on Stainless Steel Using High Energy Plasma Focus Device. Surf. Coatings Technol. 2016, 288, 1–7; https://doi.org/10.1016/j.surfcoat.2016.01.006.Search in Google Scholar

68. Li, C. X.; Bell, T. Corrosion Properties of Active Screen Plasma Nitrided 316 Austenitic Stainless Steel. Corros. Sci. 2004, 46, 1527–1547; https://doi.org/10.1016/j.corsci.2003.09.015.Search in Google Scholar

69. Moustafa, A. A.; Abdelbasir, S. M.; Ashmawy, A. M.; Ghayad, I. M.; El-Zomrawy, A. A. A Novel Ionic Liquid for Improvement of Lead-Acid Battery Performance and Protection of its Electrodes against Corrosion. Mater. Chem. Phys. 2022, 292, 126764. https://doi.org/10.1016/j.matchemphys.2022.126764.Search in Google Scholar

70. Melhi, S.; Bedair, M. A.; Alosaimi, E. H.; Younes, A. A. O.; El-Shwiniy, W. H.; Abuelela, A. M. Effective Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Newly Synthesized Schiff Base Nano Co(Ii) and Cr(Iii) Complexes: Spectral, Thermal, Electrochemical and DFT (FMO, NBO) Studies. RSC Adv. 2022, 12, 32488–32507. https://doi.org/10.1039/D2RA06571A.Search in Google Scholar PubMed PubMed Central

71. Fahmy, A.; Mix, R.; Schönhals, A.; Friedrich, J. Surface and Bulk Structure of Thin Spin Coated and Plasma-Polymerized Polystyrene Films. Plasma Chem. Plasma Process. 2012, 32, 767–780; https://doi.org/10.1007/s11090-012-9372-1.Search in Google Scholar

Received: 2024-10-13
Accepted: 2025-08-11
Published Online: 2025-09-23
Published in Print: 2025-12-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-1009/pdf
Scroll to top button