Startseite Chemical potential of iron in systems of low dimensionality
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemical potential of iron in systems of low dimensionality

  • David Büchner ORCID logo EMAIL logo , Sun Myung Kim ORCID logo , Jan Philipp Hofmann ORCID logo , Vera Krewald ORCID logo , Marc Armbrüster ORCID logo und Rolf Schäfer ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. November 2025

Abstract

The influence of particle size on heterogeneous equilibria is investigated using Fe clusters as an example. Considering a thermodynamic cycle, the change in free enthalpy for the transfer of an Fe atom from a dispersed system to the bulk is analyzed with the aid of experimental data from molecular beam experiments. Dissociation energies of mass-selected clusters are used for this purpose. It is shown that predictions within the framework of equilibrium thermodynamics, considering the free surface, are quantitatively correct for nanoscale clusters with less than 100 atoms. The effects on the redox behavior as well as the dependence of the work function on the cluster size are also addressed and discussed. In comparison with quantum chemical studies based on density functional theory, the simple thermodynamic model is surprisingly robust in predicting the chemical behavior of Fe in systems with reduced dimensionality.


Corresponding authors: David Büchner and Rolf Schäfer, Eduard-Zintl-Institute, TU Darmstadt, 64287 Darmstadt, Germany, E-mail: (D. Büchner), (R. Schäfer).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Grant No. CRC 1487, “Iron, upgraded!” – Project No. 443703006.

  7. Data availability: Data available on request.

References

1. Thomson, W. Proc. R. Soc. Edinburgh, Sect. A 1870, 7, 63–68; https://doi.org/10.1017/s0370164600041729.Suche in Google Scholar

2. Ostwald, W. Z. Phys. Chem. 1900, 34, 495–503.10.1515/zpch-1900-3431Suche in Google Scholar

3. Mittasch, A. Z. Phys. Chem. 1902, 40, 1–83.10.1515/zpch-1902-4002Suche in Google Scholar

4. Pawlow, P. Z. Phys. Chem. 1909, 65, 1–35.10.1515/zpch-1909-6502Suche in Google Scholar

5. Buffat, P.; Borel, J. P. Phys. Rev. A 1976, 13, 2287–2298; https://doi.org/10.1103/physreva.13.2287.Suche in Google Scholar

6. Henglein, A. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 600–603; https://doi.org/10.1002/bbpc.19900940513.Suche in Google Scholar

7. Hilpert, K.; Gingerich, K. A. Ber. Bunsen-Ges. Phys. Chem. 1980, 84, 739–745; https://doi.org/10.1002/bbpc.19800840810.Suche in Google Scholar

8. Plieth, W. J. J. Phys. Chem. 1982, 86, 3166–3170; https://doi.org/10.1021/j100213a020.Suche in Google Scholar

9. Gibbs, J. W. On the Equilibrium of Heterogeneous Substances (1878). In The Collected Works of J. Willard Gibbs; Longmans: New York, 1928.Suche in Google Scholar

10. Becker, R. Theorie der Wärme; Ludwig, W., Ed., 3rd ed.; Springer-Verlag: Berlin, 1985.10.1007/978-3-662-10440-8Suche in Google Scholar

11. Derry, G. N.; Kern, M. E.; Worth, E. H. J. Vac. Sci. Technol., A 2015, 33, 060801; https://doi.org/10.1116/1.4934685.Suche in Google Scholar

12. Kawano, H. Prog. Surf. Sci. 2022, 97, 100583; https://doi.org/10.1016/j.progsurf.2020.100583.Suche in Google Scholar

13. Wulff, G. Z. Kristallogr. Cryst. Mater. 1901, 34, 449–530; https://doi.org/10.1524/zkri.1901.34.1.449.Suche in Google Scholar

14. Defay, R.; Prigogine, I. Surface Tension and Adsorption; Longmans: London, 1966.Suche in Google Scholar

15. Wortis, M. Equilibrium Crystal Shapes and Interfacial Phase Transitions. In Chemistry and Physics of Solid Surfaces VII; Vanselow, R., Howe, R., Eds.; Springer-Verlag: Berlin, 1988.10.1007/978-3-642-73902-6_13Suche in Google Scholar

16. Pimpinelli, A.; Villain, J. Physics of Crystal Growth; University Press: Cambridge, 1998.10.1017/CBO9780511622526Suche in Google Scholar

17. Landau, L. D. Collected Papers of L. D. Landau: The Equlibrium Form of Crystalls; Pergamon Press: Oxford, 1965.Suche in Google Scholar

18. Howie, A.; Marks, L. D. Philos. Mag. A 1984, 49, 95–109; https://doi.org/10.1080/01418618408233432.Suche in Google Scholar

19. Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W.; Zhao, C. Nat. Commun. 2019, 10, 5599; https://doi.org/10.1038/s41467-019-13415-8.Suche in Google Scholar PubMed PubMed Central

20. Armbrüster, M.; Kovnir, K.; Friedrich, M.; Teschner, D.; Wowsnick, G.; Hahne, M.; Gille, P.; Szentmiklósi, L.; Feuerbacher, M.; Heggen, M.; Girgsdies, F.; Rosenthal, D.; Schlögl, R.; Grin, Y. Nat. Mater. 2012, 11, 690–693.10.1038/nmat3347Suche in Google Scholar PubMed

21. Wan, X.; Liu, Q.; Liu, J.; Liu, S.; Liu, X.; Zheng, L.; Shang, J.; Yu, R.; Shui, J. Nat. Commun. 2022, 13, 2963; https://doi.org/10.1038/s41467-022-30702-z.Suche in Google Scholar PubMed PubMed Central

22. Kepp, K. P. J. Phys. Chem. A 2019, 123, 6536–6546; https://doi.org/10.1021/acs.jpca.9b05140.Suche in Google Scholar PubMed

23. Zhu, S.; Xie, K.; Lin, Q.; Cao, R.; Qiu, F. Adv. Colloid Interface Sci. 2023, 315, 102905; https://doi.org/10.1016/j.cis.2023.102905.Suche in Google Scholar PubMed

24. Makov, G.; Nitzan, A.; Brus, L. E. J. Chem. Phys. 1988, 88, 5076–5085; https://doi.org/10.1063/1.454661.Suche in Google Scholar

25. Plieth, W. J. Surf. Sci. 1985, 156, 530–535; https://doi.org/10.1016/0039-6028(85)90615-6.Suche in Google Scholar

26. Yang, S.; Knickelbein, M. B. J. Chem. Phys. 1990, 93, 1533–1539; https://doi.org/10.1063/1.459131.Suche in Google Scholar

27. Rohlfing, E. A.; Cox, D.; Kaldor, A.; Johnson, K. H. J. Chem. Phys. 1984, 81, 3846–3851; https://doi.org/10.1063/1.448168.Suche in Google Scholar

28. Rohlfing, E. A.; Cox, D. M.; Kaldor, A. Chem. Phys. Lett. 1983, 99, 161–166; https://doi.org/10.1016/0009-2614(83)80551-x.Suche in Google Scholar

29. Błoński, P.; Kiejna, A. Surf. Sci. 2007, 601, 123–133; https://doi.org/10.1016/j.susc.2006.09.013.Suche in Google Scholar

30. Jin, H.; Blackwood, D. J.; Wang, Y.; Ng, M.-F.; Tan, T. L. Corros. Sci. 2022, 196, 110029; https://doi.org/10.1016/j.corsci.2021.110029.Suche in Google Scholar

31. Ozawa, S.; Suzuki, S.; Hibiya, T.; Fukuyama, H. J. Appl. Phys. 2011, 109, 014902; https://doi.org/10.1063/1.3527917.Suche in Google Scholar

32. Morohoshi, K.; Uchikoshi, M.; Isshiki, M.; Fukuyama, H. ISIJ Int. 2011, 51, 1580–1586; https://doi.org/10.2355/isijinternational.51.1580.Suche in Google Scholar

33. Ozawa, S.; Takahashi, S.; Suzuki, S.; Sugawara, H.; Fukuyama, H. Jpn. J. Appl. Phys. 2011, 50, 11RD05; https://doi.org/10.7567/jjap.50.11rd05.Suche in Google Scholar

34. Miedema, A. R. Z. Metallkd. 1978, 69, 287–292; https://doi.org/10.1515/ijmr-1978-690501.Suche in Google Scholar

35. Marlton, S. J. P.; Liu, C.; Watkins, P.; Buntine, J. T.; Bieske, E. J. J. Chem. Phys. 2023, 159, 024302; https://doi.org/10.1063/5.0155548.Suche in Google Scholar PubMed

36. Loh, S. K.; Lian, L.; Hales, D. A.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 4009–4012; https://doi.org/10.1021/j100325a001.Suche in Google Scholar

37. Loh, S. K.; Hales, D. A.; Lian, L.; Armentrout, P. B. J. Chem. Phys. 1989, 90, 5466–5485; https://doi.org/10.1063/1.456452.Suche in Google Scholar

38. Lian, L.; Su, C.-X.; Armentrout, P. B. J. Chem. Phys. 1992, 97, 4072–4083; https://doi.org/10.1063/1.463912.Suche in Google Scholar

39. Leitner, J.; Sedmidubskỳ, D. World J. Chem. Educ. 2017, 5, 206–209.10.12691/wjce-5-6-4Suche in Google Scholar

40. Miedema, A. R.; Gingerich, K. A. J. Phys. B 1979, 12, 2081–2095; https://doi.org/10.1088/0022-3700/12/13/005.Suche in Google Scholar

41. Wagman, D. D. J. Phys. Chem. Ref. Data 1982, 11 (Supplement No. 2).Suche in Google Scholar

42. Bachels, T.; Schäfer, R. Chem. Phys. Lett. 2000, 324, 365–372.10.1016/S0009-2614(00)00622-9Suche in Google Scholar

43. Bachels, T.; Schäfer, R.; Güntherodt, H.-J. Phys. Rev. Lett. 2000, 84, 4890–4893.10.1103/PhysRevLett.84.4890Suche in Google Scholar PubMed

44. Schäfer, R. Z. Phys. Chem. 2003, 217, 989–1002.10.1524/zpch.217.8.989.20420Suche in Google Scholar

45. Bobadova-Parvanova, P.; Jackson, K. A.; Srinivas, S.; Horoi, M.; Köhler, C.; Seifert, G. J. Chem. Phys. 2002, 116, 3576–3587; https://doi.org/10.1063/1.1445113.Suche in Google Scholar

46. Köhler, C.; Seifert, G.; Frauenheim, T. Chem. Phys. 2005, 309, 23–31.10.1016/j.chemphys.2004.03.034Suche in Google Scholar

47. Ma, Q.-M.; Xie, Z.; Wang, J.; Liu, Y.; Li, Y.-C. Solid State Commun. 2007, 142, 114–119; https://doi.org/10.1016/j.ssc.2006.12.023.Suche in Google Scholar

48. Aktürk, A.; Sebetci, A. AIP Adv. 2016, 6, 055103.10.1063/1.4948752Suche in Google Scholar

49. Gutsev, G. L.; Weatherford, C. A.; Jena, P.; Johnson, E.; Ramachandran, B. R. J. Phys. Chem. A 2012, 116, 10218–10228; https://doi.org/10.1021/jp307284v.Suche in Google Scholar PubMed

50. Liu, J.-R.; Die, D.; Kuang, X.-Y. Int. J. Quantum Chem. 2023, 123, e27206; https://doi.org/10.1002/qua.27206.Suche in Google Scholar

51. Elliott, J. A.; Shibuta, Y.; Wales, D. J. Philos. Mag. 2009, 89, 3311–3332; https://doi.org/10.1080/14786430903270668.Suche in Google Scholar

52. Liu, T.-D.; Fan, T.-E.; Zheng, J.-W.; Shao, G.-F.; Sun, Q.; Wen, Y.-H. J. Nanopart. Res. 2016, 18, 1–16.10.1007/s11051-016-3361-xSuche in Google Scholar

53. Angelié, C.; Soudan, J.-M. J. Chem. Phys. 2017, 146, 174303.10.1063/1.4982252Suche in Google Scholar PubMed

54. Jana, R.; Caro, M. A. Phys. Rev. B 2023, 107, 245421; https://doi.org/10.1103/physrevb.107.245421.Suche in Google Scholar

55. Yang, W.-H.; Yu, F.-Q.; Huang, R.; Shao, G.-F.; Liu, T.-D.; Wen, Y.-H. J. Chem. Inf. Model. 2023, 63, 6727–6739; https://doi.org/10.1021/acs.jcim.3c01331.Suche in Google Scholar PubMed

56. Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2016.10.1201/9781315380476Suche in Google Scholar

57. López-Moreno, S.; Hernández-Vázquez, E. E.; Ponce-Tadeo, A. P.; Ricardo-Chávez, J. L.; Morán-López, J. L. J. Chem. Phys. 2025, 162, 104304.10.1063/5.0234648Suche in Google Scholar PubMed

58. Hua, H.; Liu, Y.; Wang, D.; Li, Y. Anal. Chem. 2018, 90, 9677–9681; https://doi.org/10.1021/acs.analchem.8b02644.Suche in Google Scholar PubMed

59. Espinoza, R.; Cahua, D. V.; Magro, K.; Nguyen, S. C. J. Phys. Chem. Lett. 2024, 15, 12243–12247; https://doi.org/10.1021/acs.jpclett.4c02998.Suche in Google Scholar PubMed PubMed Central

Received: 2025-09-05
Accepted: 2025-10-06
Published Online: 2025-11-12

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0139/html
Button zum nach oben scrollen