Home Machine learning studies for the effects of probes and cavity on quantum synchronization
Article
Licensed
Unlicensed Requires Authentication

Machine learning studies for the effects of probes and cavity on quantum synchronization

  • Qing-Yu Meng , Yong Hu , Qing Yang , Qin-Sheng Zhu and Xiao-Yu Li
Published/Copyright: February 26, 2021

Abstract

As an important technology of the quantum detection, the quantum synchronization detection is always used in the detection or measurement of some quantum systems. A probing model is established to describe the probing of a qubit system in the cavity field and to reveal the effect of the environment (cavity) on the quantum synchronization occurrence, as well as the interactions among environment, a qubit system, and probing equipment. By adjusting the frequency of the probe, the in-phase, anti-phase, and out-of-phase synchronization can be achieved. Simultaneously, the effect of γ3 which describes the interaction strength between the probe and environments for quantum synchronization is discussed under different Ohmic dissipation index s. Finally, the machine learning method is applied to present an optimization for classification and regression of synchronization transition dependent on s and γ3.


Corresponding author: Qin-Sheng Zhu, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China, E-mail:

  1. Author contributions: Qingyu Meng has made substantial contributions to the conception or design of the work or the acquisition, analysis, or interpretation of data for the work; and Qingyu Meng has drafted the work or revised it critically for important intellectual content and has approved the final version to be published; and Qingyu Meng has agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Yong Hu and Qing Yang calculated part of the data and prepared Figure 3. Qinsheng Zhu and Xiaoyu Li played an important role in the revision of the article. All authors have reviewed the manuscript and provided editing and writing assistance.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: trends, perspectives, and prospects,” Science, vol. 349, p. 255, 2015, https://doi.org/10.1126/science.aaa8415.Search in Google Scholar

[2] X. Y. Li, Q. S. Zhu, M. Z. Zhu, Y. M. Huang, H. Wu, and S. Y. Wu, “Machine learning study of the relationship between the geometric and entropy discord,” Europhys. Lett., vol. 127, p. 20009, 2019, https://doi.org/10.1209/0295-5075/127/20009.Search in Google Scholar

[3] Q. S. Zhu, C. C. Ding, S. Y. Wu, and W. Lai, “The role of correlated environments on non-Markovianity and correlations of a two-qubit system,” Eur. Phys. J., vol. 69, p. 231, 2015, https://doi.org/10.1140/epjd/e2015-60223-4.Search in Google Scholar

[4] Q. S. Zhu, C. J. Fu, and W. Lai, “The correlated environments depress entanglement decoherence in the dimer system,” Z. Naturforsch., vol. 68a, p. 272, 2013, https://doi.org/10.5560/zna.2012-0111.Search in Google Scholar

[5] X. Y. Li, Q. S. Zhu, M. Z. Zhu, H. Wu, S. Y. Wu, and M. C. Zhu, “The freezing Rènyi quantum discord,” Sci. Rep., vol. 9, p. 14739, 2019, https://doi.org/10.1038/s41598-019-51206-9.Search in Google Scholar

[6] X. Y. Li, Q. S. Zhu, Q. Y. Meng et al., Researching the link between the geometric and rènyi discord for special canonical initial states based on neural network method, Comput. Mater. Continua (CMC) 60 (2019) 1087–1095, doi:https://doi.org/10.32604/cmc.2019.06060.Search in Google Scholar

[7] G. Carleo and M. Troyer, “Solving the quantum many-body problem with artificial neural networks,” Science, vol. 355, p. 602, 2017, https://doi.org/10.1126/science.aag2302.Search in Google Scholar

[8] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, “Neural-network quantum state tomography,” Nat. Phys., vol. 14, p. 447, 2018, https://doi.org/10.1038/s41567-018-0048-5.Search in Google Scholar

[9] X. Y. Li, Q. S. Zhu, Y. M. Huang et al., Research on the freezing phenomenon of quantum correlation by machine learning, Comput. Mater. Continua (CMC) 65 (2020) 2143–2151 doi:https://doi.org/10.32604/cmc.2020.010865.Search in Google Scholar

[10] C. Huygens, O Euvrescomplètes de Christiaan Huygens, The Hague, Martinus Nijhoff, 1893.Search in Google Scholar

[11] S. Walter, A. Nunnenkamp, and C. Bruder, “Quantum synchronization of a driven self-sustained oscillator,” Phys. Rev. Lett., vol. 112, p. 094102, 2014, https://doi.org/10.1103/physrevlett.112.094102.Search in Google Scholar

[12] T. E. Lee, C. -K. Chan, and S. Wang, “Entanglement tongue and quantum synchronization of disordered oscillators,” Phys. Rev. E, vol. 89, p. 022913, 2014, https://doi.org/10.1103/physreve.89.022913.Search in Google Scholar

[13] T. E. Lee and H. R. Sadeghpour, “Quantum synchronization of quantum van der Pol oscillators with trapped ions,” Phys. Rev. Lett., vol. 111, p. 234101, 2013, https://doi.org/10.1103/physrevlett.111.234101.Search in Google Scholar

[14] T. Weiss, S. Walter, and F. Marquardt, “Quantum-coherent phase oscillations in synchronization,” Phys. Rev. A, vol. 95, p. 041802, 2017, https://doi.org/10.1103/physreva.95.041802.Search in Google Scholar

[15] W. Stefan, N. Andreas, B. Christoph, Quantum and hybrid mechanical systems: from fundamentals to applications, Ann. Phys. 527 (2015) 131.Search in Google Scholar

[16] M. Xu and M. J. Holland, “Conditional ramsey spectroscopy with synchronized atoms,” Phys. Rev. Lett., vol. 114, p. 103601, 2015, https://doi.org/10.1103/physrevlett.114.103601.Search in Google Scholar

[17] M. R. Hush, W. Li, S. Genway, I. Lesanovsky, and A. D. Armour, “Spin correlations as a probe of quantum synchronization in trapped ion phonon-lasers,” Phys. Rev. A, vol. 91, p. 061401, 2015, https://doi.org/10.1103/physreva.91.061401.Search in Google Scholar

[18] G. Heinrich, M. Ludwig, Q. Jiang, B. Kubala, and F. Marquardt, “Collective dynamics in optomechanical arrays,” Phys. Rev. Lett., vol. 107, p. 043603, 2011, https://doi.org/10.1103/physrevlett.107.043603.Search in Google Scholar

[19] G. L. Giorgi, F. Galve, R. Zambrini, Probing the spectral density of a dissipative qubit via quantum synchronization, Phys. Rev. A 94 (2016) 052121.10.1103/PhysRevA.94.052121Search in Google Scholar

[20] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge, Cambridge University Press, 2001.10.1017/CBO9780511755743Search in Google Scholar

[21] A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio, “Measures of quantum synchronization in continuous variable systems,” Phys. Rev. Lett., vol. 111, p. 103605, 2013, https://doi.org/10.1103/physrevlett.111.103605.Search in Google Scholar

[22] P. P. Orth, D. Roosen, W. Hofstetter, and K. L. Hur, “Dynamics, synchronization, and quantum phase transitions of two dissipative spins,” Phys. Rev. B, vol. 82, p. 144423, 2010, https://doi.org/10.1103/physrevb.82.144423.Search in Google Scholar

[23] V. Ameri, M. Eghbali-Arani, A, Mari et al., Mutual information as an order parameter for quantum synchronization, Phys. Rev. A 91 (2015) 01230, doi:https://doi.org/10.1103/physreva.91.012301.Search in Google Scholar

[24] B. Militello, H. Nakazato, A. Napoli. Synchronizing quantum harmonic oscillators through two-level systems, Phys. Rev. A 96 (2017) 023862, doi:https://doi.org/10.1103/physreva.96.023862.Search in Google Scholar

[25] F. Galve, G. L. Giorgi, and R. Zambrini, in Lectures on General Quantum Correlations and their Applications, F. Fanchini, D. Soares Pinto, and G. Adesso, Eds., Cham, CH, Springer, 2017, pp. 393–420.10.1007/978-3-319-53412-1_18Search in Google Scholar

[26] W. Li, C. Li, and H. Song, “Quantum synchronization of chaotic oscillator behaviors among coupled BEC–optomechanical systems,” Quant. Inf. Process., vol. 16, p. 80, 2017, https://doi.org/10.1007/s11128-017-1517-y.Search in Google Scholar

[27] H. Eneiz, D. Z. Rossatto, F. A. cárdenas-López, E. Solano, and M. Sanz, “Degree of quantumness in quantum synchronization,” Sci. Rep., vol. 9, p. 19933, 2019.10.1038/s41598-019-56468-xSearch in Google Scholar PubMed PubMed Central

[28] N. Golubeva, M. Esposito, and A. Imparato, “Entropy-generated power and its efficiency,” Phys.Rev.E., vol. 88, p. 042115, 2013, https://doi.org/10.1103/physreve.88.042115.Search in Google Scholar

[29] A. Cabot, G. L. Giorgi, F. Galve, and R. Zambrini, “Quantum synchronization in dimer atomic lattices,” Phys. Rev. Lett., vol. 123, p. 023604, 2019, https://doi.org/10.1103/physrevlett.123.023604.Search in Google Scholar

[30] G. J. Qiao, H. X. Gao, H. D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep., vol. 8, p. 15614, 2018, https://doi.org/10.1038/s41598-018-33903-z.Search in Google Scholar

[31] T. T. Huan, R. G. Zhou, and H. Ian, “Synchronization of two cavity-coupled qubits measured by entanglement,” Sci. Rep., vol. 10, p. 12975, 2020, https://doi.org/10.1038/s41598-020-69903-1.Search in Google Scholar

[32] N. Yokoshi, K. Odagiri, A. Ishikawa, H. Ishihara, Synchronization dynamics in a designed open system, Phys. Rev. Lett. 118 (2017) 203601, doi:https://doi.org/10.1103/physrevlett.118.203601.Search in Google Scholar

[33] G. G. Estarellas, G. L. Giorgi, M. C. Soriano, and R. Zambrini, “Machine learning applied to quantum synchronization assisted probing,” Adv Quantum Technol., vol. 2, p. 1800085, 2019.10.1002/qute.201800085Search in Google Scholar

[34] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys., vol. 59, p. 1, 1987, https://doi.org/10.1103/revmodphys.59.1.Search in Google Scholar

[35] H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford, UK, Oxford University Press, 2007.10.1093/acprof:oso/9780199213900.001.0001Search in Google Scholar

[36] I. de Vega, D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89 (2017) 015001, doi:https://doi.org/10.1103/revmodphys.89.015001.Search in Google Scholar

[37] U. Weiss, Series in Modern Condensed Matter Systems, Singapore, Scientific, 2008.Search in Google Scholar

[38] G. E. Hinton, “Connectionist learning procedures,” Artif. Intell., vol. 40, pp. 185–234, 1989.10.1016/0004-3702(89)90049-0Search in Google Scholar

Received: 2020-10-21
Accepted: 2021-01-31
Published Online: 2021-02-26
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0303/html
Scroll to top button