Home Temporal phases of long-term potentiation (LTP): myth or fact?
Article
Licensed
Unlicensed Requires Authentication

Temporal phases of long-term potentiation (LTP): myth or fact?

  • Abdul-Karim Abbas EMAIL logo , Agnès Villers and Laurence Ris
Published/Copyright: May 20, 2015
Become an author with De Gruyter Brill

Abstract

Long-term potentiation (LTP) remains the most widely accepted model for learning and memory. In accordance with this belief, the temporal differentiation of LTP into early and late phases is accepted as reflecting the differentiation of short-term and long-term memory. Moreover, during the past 30 years, protein synthesis inhibitors have been used to separate the early, protein synthesis-independent (E-LTP) phase and the late, protein synthesis-dependent (L-LTP) phase. However, the role of these proteins has not been formally identified. Additionally, several reports failed to show an effect of protein synthesis inhibitors on LTP. In this review, a detailed analysis of extensive behavioral and electrophysiological data reveals that the presumed correspondence of LTP temporal phases to memory phases is neither experimentally nor theoretically consistent. Moreover, an overview of the time courses of E-LTP in hippocampal slices reveals a wide variability ranging from <1 h to more than 5 h. The existence of all these conflictual findings should lead to a new vision of LTP. We believe that the E-LTP vs. L-LTP distinction, established with protein synthesis inhibitor studies, reflects a false dichotomy. We suggest that the duration of LTP and its dependency on protein synthesis are related to the availability of a set of proteins at synapses and not to the de novo synthesis of plasticity-related proteins. This availability is determined by protein turnover kinetics, which is regulated by previous and ongoing electrical activities and by energy store availability.


Corresponding author: Abdul-Karim Abbas, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 432, S-40530 Gothenburg, Sweden, e-mail:

Acknowledgments

A.-K.A. collected the originals articles, analyzed the data, and wrote the first version of the paper. L.R. discussed the analysis and interpretation of the data and corrected, restructured, and resumed the paper. A.V. corrected the last version, organized the references, and worked on the illustrations. We are grateful to Prof. Paul Gold for his intensive discussion, critical reading, and editorial improvement of this manuscript. Animal procedures were carried out in accordance with the guidelines of the local Ethics Committee of University of Gothenburg (Sweden). The review and the work included in it were generously supported by the grants from foundations of the Royal Society of Arts and Sciences in Gothenburg, Gun och Bertil Stohnes, Wilhelm och Martina Lundgren, and Handlanden Hjalmar Svensson (Sweden); the Belgian Queen Elisabeth Medical Foundation; and the Belgian Fund for Scientific Research (F.R.S.-FNRS; Belgium). A.-K.A. is very grateful to the Swedish Society for Medical Research, The Swedish Society of Medicine, The Göteborg Medical Society, and Fredrik O Ingrid Thurings Stiftelse for a fellowship support at the University of Mons (Belgium), which allowed him to complete this work.

References

Abbas, A.K. (2013). Evidence for constitutive protein synthesis in hippocampal LTP stabilization. Neuroscience 246, 301–311.10.1016/j.neuroscience.2013.05.011Search in Google Scholar

Abbas, A.K., Dozmorov, M., Li, R., Huang, F.-S., Hellberg, F., Danielson, J., Tian, Y., Ekström, J., Sandberg, M., and Wigström, H. (2009). Persistent LTP without triggered protein synthesis. Neurosci. Res. 63, 59–65.10.1016/j.neures.2008.10.008Search in Google Scholar

Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R., and Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626.10.1016/S0092-8674(00)81904-2Search in Google Scholar

Abraham, W.C. (2001). Persisting with long-term potentiation as a memory mechanism. In: Neuronal Mechanisms of Memory Formation. C. Hölscher, ed. (Cambridge: Cambridge University Press), pp. 37–57.Search in Google Scholar

Abraham, W.C. (2003). How long will long-term potentiation last? Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 735–744.10.1098/rstb.2002.1222Search in Google Scholar

Abraham, W.C. and Otani, S. (1991). Macromolecules and maintenance of long-term potentiation. In: Kindling and Synaptic Plasticity. The Legacy of Graham Goddard. F. Morrell, ed. (Boston: Brikhauser), pp. 92–109.Search in Google Scholar

Abraham, W.C., Dragunow, M., and Tate, W.P. (1991). The role of immediate early genes in the stabilization of long-term potentiation. Mol. Neurobiol. 5, 297–314.10.1007/BF02935553Search in Google Scholar

Abraham, W.C., Mason, S.E., Demmer, J., Williams, J.M., Richardson, C.L., Tate, W.P., Lawlor, P.A., and Dragunow, M. (1993). Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience 56, 717–727.10.1016/0306-4522(93)90369-QSearch in Google Scholar

Abraham, W.C., Mason-Parker, S.E., Williams, J., and Dragunow, M. (1995). Analysis of the decremental nature of LTP in the dentate gyrus. Brain Res. Mol. Brain Res. 30, 367–372.10.1016/0169-328X(95)00026-OSearch in Google Scholar

Abraham, W.C., Logan, B., Greenwood, J.M., and Dragunow, M. (2002). Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci. 22, 9626–9634.10.1523/JNEUROSCI.22-21-09626.2002Search in Google Scholar

Adams, J.P. and Sweatt, J.D. (2002). Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163.10.1146/annurev.pharmtox.42.082701.145401Search in Google Scholar

Agranoff, B.W., Davis, R.E., and Brink, J.J. (1966). Chemical studies on memory fixation in goldfish. Brain Res. 1, 303–309.10.1016/0006-8993(66)90095-3Search in Google Scholar

Agranoff, B., Burrell, H., Dokas, L., and Springer, A. (1978). Progress in biochemical approaches to learning and memory. In: Psychopharmacology: A Generation of Progress. M.A. Lipton, A. DiMasco and K.F. Killam, eds. (New York: Raven Press), pp. 623–635.Search in Google Scholar

Ahmed, T. and Frey, J.U. (2005a). Phosphodiesterase 4B (PDE4B) and cAMP-level regulation within different tissue fractions of rat hippocampal slices during long-term potentiation in vitro. Brain Res. 1041, 212–222.10.1016/j.brainres.2005.02.023Search in Google Scholar

Ahmed, T. and Frey, J.U. (2005b). Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro. Neuropharmacology 49, 477–492.10.1016/j.neuropharm.2005.04.018Search in Google Scholar

Aiken, C.T., Kaake, R.M., Wang, X., and Huang, L. (2011). Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteomics 10, R110.006924.Search in Google Scholar

Alarcon, J.M., Hodgman, R., Theis, M., Huang, Y.-S., Kandel, E.R., and Richter, J.D. (2004). Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327.10.1101/lm.72704Search in Google Scholar

Allen, C. and Stevens, C.F. (1994). An evaluation of causes for unreliability of synaptic transmission. Proc. Natl. Acad. Sci. USA 91, 10380–10383.10.1073/pnas.91.22.10380Search in Google Scholar

Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230.10.1126/science.181.4096.223Search in Google Scholar

Anokhin, K.V., Tiunova, A.A., and Rose, S.P.R. (2002). Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 15, 1759–1765.10.1046/j.1460-9568.2002.02023.xSearch in Google Scholar

Antion, M.D., Merhav, M., Hoeffer, C.A., Reis, G., Kozma, S.C., Thomas, G., Schuman, E.M., Rosenblum, K., and Klann, E. (2008). Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn. Mem. 15, 29–38.10.1101/lm.661908Search in Google Scholar

Atkins, C.M., Selcher, J.C., Petraitis, J.J., Trzaskos, J.M., and Sweatt, J.D. (1998). The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609.10.1038/2836Search in Google Scholar

Atkins, C.M., Nozaki, N., Shigeri, Y., and Soderling, T.R. (2004). Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 24, 5193–5201.10.1523/JNEUROSCI.0854-04.2004Search in Google Scholar

Atkinson, R. and Shiffrin, R. (1968). Human memory: a proposed system and its control processes. In: The Psychology of Learning and Motivation. K.W. Spence and J.T. Spence, eds. (New York: Academic Press), pp. 89–195.10.1016/S0079-7421(08)60422-3Search in Google Scholar

Auerbach, B.D. and Bear, M.F. (2010). Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J. Neurophysiol. 104, 1047–1051.10.1152/jn.00449.2010Search in Google Scholar

Bach, M.E., Barad, M., Son, H., Zhuo, M., Lu, Y.F., Shih, R., Mansuy, I., Hawkins, R.D., and Kandel, E.R. (1999). Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. USA 96, 5280–5285.10.1073/pnas.96.9.5280Search in Google Scholar

Banko, J.L., Poulin, F., Hou, L., DeMaria, C.T., Sonenberg, N., and Klann, E. (2005). The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590.10.1523/JNEUROSCI.2423-05.2005Search in Google Scholar

Barad, M., Bourtchouladze, R., Winder, D.G., Golan, H., and Kandel, E. (1998). Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc. Natl. Acad. Sci. USA 95, 15020–15025.10.1073/pnas.95.25.15020Search in Google Scholar

Barco, A., Alarcon, J.M., and Kandel, E.R. (2002). Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703.10.1016/S0092-8674(02)00657-8Search in Google Scholar

Barco, A., Patterson, S.L., Patterson, S., Alarcon, J.M., Gromova, P., Mata-Roig, M., Morozov, A., and Kandel, E.R. (2005). Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48, 123–137.10.1016/j.neuron.2005.09.005Search in Google Scholar

Barea-Rodríguez, E.J., Rivera, D.T., Jaffe, D.B., and Martinez, J., Jr. (2000). Protein synthesis inhibition blocks the induction of mossy fiber long-term potentiation in vivo. J. Neurosci. 20, 8528–8532.10.1523/JNEUROSCI.20-22-08528.2000Search in Google Scholar

Barnes, C.A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104.10.1037/h0077579Search in Google Scholar

Barondes, S.H. (1970). Cerebral protein synthesis inhibitors block long-term memory. Int. Rev. Neurobiol. 12, 177–205.10.1016/S0074-7742(08)60061-6Search in Google Scholar

Barondes, S.H. and Cohen, H.D. (1967). Delayed and sustained effect of acetoxycycloheximide on memory in mice. Proc. Natl. Acad. Sci. USA 58, 157–164.10.1073/pnas.58.1.157Search in Google Scholar PubMed PubMed Central

Barondes, S.H. and Cohen, H.D. (1968). Arousal and the conversion of ‘short-term’ to ‘long-term’ memory. Proc. Natl. Acad. Sci. USA 61, 923–929.10.1073/pnas.61.3.923Search in Google Scholar

Barondes, S.H. and Squire, L.R. (1972). Time and the biology of memory. Clin. Neurosurg. 19, 381–396.10.1093/neurosurgery/19.CN_suppl_1.381Search in Google Scholar

Barr, W.B., Goldberg, E., Wasserstein, J., and Novelly, R.A. (1990). Retrograde amnesia following unilateral temporal lobectomy. Neuropsychologia 28, 243–255.10.1016/0028-3932(90)90018-JSearch in Google Scholar

Barraco, R.A. and Stettner, L.J. (1976). Antibiotics and memory. Psychol. Bull. 83, 242–302.10.1037/0033-2909.83.2.242Search in Google Scholar

Barrionuevo, G. and Brown, T.H. (1983). Associative long-term potentiation in hippocampal slices. Proc. Natl. Acad. Sci. USA 80, 7347–7351.10.1073/pnas.80.23.7347Search in Google Scholar

Barrionuevo, G., Schottler, F., and Lynch, G. (1980). The effects of repetitive low frequency stimulation on control and ‘potentiated’ synaptic responses in the hippocampus. Life Sci. 27, 2385–2391.10.1016/0024-3205(80)90509-3Search in Google Scholar

Bashir, Z.I. and Collingridge, G.L. (1994). An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp. Brain Res. 100, 437–443.10.1007/BF02738403Search in Google Scholar

Bashir, Z.I., Bortolotto, Z.A., Davies, C.H., Berretta, N., Irving, A.J., Seal, A.J., Henley, J.M., Jane, D.E., Watkins, J.C., and Collingridge, G.L. (1993). Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.10.1038/363347a0Search in Google Scholar

Behnisch, T. and Reymann, K.G. (1995). Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons. Neurosci. Lett. 192, 185–188.10.1016/0304-3940(95)11641-9Search in Google Scholar

Behnisch, T., Matsushita, S., and Knöpfel, T. (2004). Imaging of gene expression during long-term potentiation. Neuroreport 15, 2039–2043.10.1097/00001756-200409150-00009Search in Google Scholar PubMed

Belelovsky, K., Elkobi, A., Kaphzan, H., Nairn, A.C., and Rosenblum, K. (2005). A molecular switch for translational control in taste memory consolidation. Eur. J. Neurosci. 22, 2560–2568.10.1111/j.1460-9568.2005.04428.xSearch in Google Scholar

Ben-Nissan, G. and Sharon, M. (2014). Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 4, 862–884.10.3390/biom4030862Search in Google Scholar

Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W., and Goldberg, A.L. (2003). ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78.10.1016/S1097-2765(02)00775-XSearch in Google Scholar

Benne, R. and Hershey, J.W. (1978). The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087.10.1016/S0021-9258(17)40805-2Search in Google Scholar

Bennett, E., Rosenzweig, M., and Flood, J. (1977). Protein synthesis and memory studied with anisomycin. In: Mechanisms, Regulation and Special Function of Protein Synthesis in the Brain. S. Roberts, A. Lajtha and W. Gispen, eds. (Amsterdam: Elsevier, North-Holland Biomedical Press), pp. 319–329.Search in Google Scholar

Bergado, J.A., Almaguer-Melian, W., Kostenko, S., Frey, S., and Frey, J.U. (2003). Behavioral reinforcement of long-term potentiation in rat dentate gyrus in vivo is protein synthesis-dependent. Neurosci. Lett. 351, 56–58.10.1016/S0304-3940(03)00943-1Search in Google Scholar

Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., and Medina, J.H. (1997). Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. USA 94, 7041–7046.10.1073/pnas.94.13.7041Search in Google Scholar

Bi, X., Standley, S., and Baudry, M. (1998). Posttranslational regulation of ionotropic glutamate receptors and synaptic plasticity. Int. Rev. Neurobiol. 42, 227–284.10.1016/S0074-7742(08)60612-1Search in Google Scholar

Bingol, B. and Schuman, E.M. (2006). Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441, 1144–1148.10.1038/nature04769Search in Google Scholar PubMed

Bingol, B. and Sheng, M. (2011). Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69, 22–32.10.1016/j.neuron.2010.11.006Search in Google Scholar PubMed

Bingol, B., Wang, C.F., Arnott, D., Cheng, D., Peng, J., and Sheng, M. (2010). Autophosphorylated CaMKIIa acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567–578.10.1016/j.cell.2010.01.024Search in Google Scholar PubMed

Bito, H., Deisseroth, K., and Tsien, R.W. (1996). CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.10.1016/S0092-8674(00)81816-4Search in Google Scholar

Blenis, J., Chung, J., Erikson, E., Alcorta, D.A., and Erikson, R.L. (1991). Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp90rsk and pp70-S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Differ. 2, 279–285.Search in Google Scholar

Bliss, T.V. and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.10.1038/361031a0Search in Google Scholar

Bliss, T.V. and Gardner-Medwin, A.R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357–374.10.1113/jphysiol.1973.sp010274Search in Google Scholar

Bliss, T.V. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.10.1113/jphysiol.1973.sp010273Search in Google Scholar

Bliss, T.V.P., Collingridge, G., and Morris, R. (2007). Synaptic plasticity in the hippocampus. In: The Hippocampus. P. Andersen, R. Morris, D. Amaral, T. Bliss and J. O’Keefe, eds. (Oxford: Oxford University Press), pp. 343–474.Search in Google Scholar

Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R., and Landau, E.M. (1995). Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403–1414.10.1016/0896-6273(95)90018-7Search in Google Scholar

Bloom, A.S., Quinton, E.E., and Carr, L.A. (1977). Effects of cycloheximide, diethyldithiocarbamate and D-amphetamine on protein and catecholamine biosynthesis in mouse brain. Neuropharmacology 16, 411–418.10.1016/0028-3908(77)90082-XSearch in Google Scholar

Bohley, P., Kirschke, H., Langner, J., Viederanders, B., Ansorge, S., and Hanson, H. (1974). Degradation of rat liver proteins. In: Intracellular Protein Catabolism. Proceedings of the Symposium. H. Hanson and P. Bohley, eds. (Halle: Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg), pp. 201–208.Search in Google Scholar

Borges, A.C. and Gomes, S.L. (2000). PEST sequences in cAMP-dependent protein kinase subunits of the aquatic fungus Blastocladiella emersonii are necessary for in vitro degradation by endogenous proteases. Mol. Microbiol. 36, 926–939.10.1046/j.1365-2958.2000.01912.xSearch in Google Scholar

Bortolotto, Z.A. and Collingridge, G.L. (1993). Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology 32, 1–9.10.1016/0028-3908(93)90123-KSearch in Google Scholar

Bortolotto, Z.A., Bashir, Z.I., Davies, C.H., and Collingridge, G.L. (1994). A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368, 740–743.10.1038/368740a0Search in Google Scholar

Bortolotto, Z.A., Bashir, Z.I., Davies, C.H., Taira, T., Kaila, K., and Collingridge, G.L. (1995). Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. J. Neurosci. Methods 59, 19–24.10.1016/0165-0270(94)00189-NSearch in Google Scholar

Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A.J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.10.1016/0092-8674(94)90400-6Search in Google Scholar

Boynton, S. and Tully, T. (1990). Induction of a long term memory in Drosophila is not affected by protein synthesis inhibitors. In: The Biology of Memory. L.R. Squire and E. Lindenlaub, eds. (Stuttgart: F.K. Schattauer Verlag), pp. 91–102.Search in Google Scholar

Bozdagi, O., Shan, W., Tanaka, H., Benson, D.L., and Huntley, G.W. (2000). Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259.10.1016/S0896-6273(00)00100-8Search in Google Scholar

Bradshaw, K.D., Emptage, N.J., and Bliss, T.V.P. (2003). A role for dendritic protein synthesis in hippocampal late LTP. Eur. J. Neurosci. 18, 3150–3152.10.1111/j.1460-9568.2003.03054.xSearch in Google Scholar

Breakwell, N.A., Rowan, M.J., and Anwyl, R. (1998). (+)-MCPG blocks induction of LTP in CA1 of rat hippocampus via agonist action at an mGluR group II receptor. J. Neurophysiol. 79, 1270–1276.10.1152/jn.1998.79.3.1270Search in Google Scholar

Brown, T.H., Kairiss, E.W., and Keenan, C.L. (1990). Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475–511.10.1146/annurev.ne.13.030190.002355Search in Google Scholar

Brown, R.E., Rabe, H., and Reymann, K.G. (1994). (RS)-α-methyl-4-carboxyphenylglycine (MCPG) does not block θ burst-induced long-term potentiation in area CA1 of rat hippocampal slices. Neurosci. Lett. 170, 17–21.10.1016/0304-3940(94)90228-3Search in Google Scholar

Bull, R., Ferrera, E., and Orrego, F. (1976). Effects of anisomycin on brain protein synthesis and passive avoidance learning in newborn chicks. J. Neurobiol. 7, 37–49.10.1002/neu.480070105Search in Google Scholar PubMed

Cai, F., Frey, J.U., Sanna, P.P., and Behnisch, T. (2010). Protein degradation by the proteasome is required for synaptic tagging and the heterosynaptic stabilization of hippocampal late-phase long-term potentiation. Neuroscience 169, 1520–1526.10.1016/j.neuroscience.2010.06.032Search in Google Scholar PubMed

Cajal, R. (1909). Histologie du Système Nerveux de l’Homme et des Vertébrés, Paris.Search in Google Scholar

Calixto, E., Thiels, E., Klann, E., and Barrionuevo, G. (2003). Early maintenance of hippocampal mossy fiber-long-term potentiation depends on protein and RNA synthesis and presynaptic granule cell integrity. J. Neurosci. 23, 4842–4849.10.1523/JNEUROSCI.23-12-04842.2003Search in Google Scholar

Cammalleri, M., Lütjens, R., Berton, F., King, A.R., Simpson, C., Francesconi, W., and Sanna, P.P. (2003). Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl. Acad. Sci. USA 100, 14368–14373.10.1073/pnas.2336098100Search in Google Scholar PubMed PubMed Central

Canal, C.E., Chang, Q., and Gold, P.E. (2007). Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor. Proc. Natl. Acad. Sci. USA 104, 12500–12505.10.1073/pnas.0705195104Search in Google Scholar

Cano, E., Hazzalin, C.A., and Mahadevan, L.C. (1994). Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol. Cell. Biol. 14, 7352–7362.Search in Google Scholar

Cao, G. and Harris, K.M. (2012). Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat. J. Neurophysiol. 107, 902–912.10.1152/jn.00780.2011Search in Google Scholar

Capron, B., Sindic, C., Godaux, E., and Ris, L. (2006). The characteristics of LTP induced in hippocampal slices are dependent on slice-recovery conditions. Learn. Mem. 13, 271–277.10.1101/lm.135406Search in Google Scholar

Carlier, M.F. and Pantaloni, D. (1997). Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459–467.10.1006/jmbi.1997.1062Search in Google Scholar

Chain, D.G., Schwartz, J.H., and Hegde, A.N. (1999). Ubiquitin-mediated proteolysis in learning and memory. Mol. Neurobiol. 20, 125–142.10.1007/BF02742438Search in Google Scholar

Chan, C.-S., Weeber, E.J., Kurup, S., Sweatt, J.D., and Davis, R.L. (2003). Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci. 23, 7107–7116.10.1523/JNEUROSCI.23-18-07107.2003Search in Google Scholar

Chen, G., Kolbeck, R., Barde, Y.A., Bonhoeffer, T., and Kossel, A. (1999). Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J. Neurosci. 19, 7983–7990.10.1523/JNEUROSCI.19-18-07983.1999Search in Google Scholar

Chen, A., Muzzio, I.A., Malleret, G., Bartsch, D., Verbitsky, M., Pavlidis, P., Yonan, A.L., Vronskaya, S., Grody, M.B., Cepeda, I., et al. (2003). Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39, 655–669.10.1016/S0896-6273(03)00501-4Search in Google Scholar

Cherkin, A. (1969). Kinetics of memory consolidation: role of amnesic treatment parameters. Proc. Natl. Acad. Sci. USA 63, 1094–1101.10.1073/pnas.63.4.1094Search in Google Scholar PubMed PubMed Central

Chinestra, P., Aniksztejn, L., Diabira, D., and Ben-Ari, Y. (1993). (RS)-α-methyl-4-carboxyphenylglycine neither prevents induction of LTP nor antagonizes metabotropic glutamate receptors in CA1 hippocampal neurons. J. Neurophysiol. 70, 2684–2689.10.1152/jn.1993.70.6.2684Search in Google Scholar PubMed

Chorover, S. (1976). An experimental critique of the ‘consolidation studies’ and an alternative ‘model-systems’ approach to the biophysiology of memory. In: Neural Mechanisms of Learning and Memory. M.P. Rosenzweig and E.L. Bennett, eds. (Cambridge: The MIT Press), pp. 561–582.Search in Google Scholar

Chorover, S.L. and Schiller, P.H. (1966). Reexamination of prolonged retrograde amnesia in one-trial learning. J. Comp. Physiol. Psychol. 61, 34–41.10.1037/h0022874Search in Google Scholar

Ciechanover, A. (2012). Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim. Biophys. Acta 1824, 3–13.10.1016/j.bbapap.2011.03.007Search in Google Scholar

Cipolotti, L., Shallice, T., Chan, D., Fox, N., Scahill, R., Harrison, G., Stevens, J., and Rudge, P. (2001). Long-term retrograde amnesia … the crucial role of the hippocampus. Neuropsychologia 39, 151–172.10.1016/S0028-3932(00)00103-2Search in Google Scholar

Clark, R.E., Broadbent, N.J., and Squire, L.R. (2005). Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus 15, 340–346.10.1002/hipo.20076Search in Google Scholar

Cohen, H.D. and Barondes, S.H. (1967). Puromycin effect on memory may be due to occult seizures. Science 157, 333–334.10.1126/science.157.3786.333Search in Google Scholar

Cohen, H.D. and Barondes, S.H. (1968). Effect of acetoxycycloheximide on learning and memory of a light-dark discrimination. Nature 218, 271–273.10.1038/218271a0Search in Google Scholar

Cohen, H.D., Ervin, F., and Barondes, S.H. (1966). Puromycin and cycloheximide: different effects on hippocampal electrical activity. Science 154, 1557–1558.10.1126/science.154.3756.1557Search in Google Scholar

Cohen, L.D., Zuchman, R., Sorokina, O., Müller, A., Dieterich, D.C., Armstrong, J.D., Ziv, T., and Ziv, N.E. (2013). Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8, e63191.10.1371/journal.pone.0063191Search in Google Scholar

Cohen-Matsliah, S.I., Motanis, H., Rosenblum, K., and Barkai, E. (2010). A novel role for protein synthesis in long-term neuronal plasticity: maintaining reduced postburst after hyperpolarization. J. Neurosci. 30, 4338–4342.10.1523/JNEUROSCI.5005-09.2010Search in Google Scholar

Colledge, M., Snyder, E.M., Crozier, R.A., Soderling, J.A., Jin, Y., Langeberg, L.K., Lu, H., Bear, M.F., and Scott, J.D. (2003). Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595–607.10.1016/S0896-6273(03)00687-1Search in Google Scholar

Collingridge, G.L. and Bliss, T.V.P. (1987). NMDA receptors – their role in long-term potentiation. Trends Neurosci. 10, 288–293.10.1016/0166-2236(87)90175-5Search in Google Scholar

Costa-Mattioli, M., Gobert, D., Harding, H., Herdy, B., Azzi, M., Bruno, M., Bidinosti, M., Ben Mamou, C., Marcinkiewicz, E., Yoshida, M., et al. (2005). Translational control of hippocampal synaptic plasticity and memory by the eIF2a kinase GCN2. Nature 436, 1166–1173.10.1038/nature03897Search in Google Scholar

Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello, C., Sossin, W., Kaufman, R., Pelletier, J., Rosenblum, K., et al. (2007). eIF2a phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206.10.1016/j.cell.2007.01.050Search in Google Scholar

Cracco, J.B., Serrano, P., Moskowitz, S.I., Bergold, P.J., and Sacktor, T.C. (2005). Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus 15, 551–556.10.1002/hipo.20078Search in Google Scholar

Davies, K.J. (1993). Protein modification by oxidants and the role of proteolytic enzymes. Biochem. Soc. Trans. 21, 346–353.10.1042/bst0210346Search in Google Scholar

Davis, H.P. and Squire, L.R. (1984). Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559.10.1037/0033-2909.96.3.518Search in Google Scholar

Davis, S., Vanhoutte, P., Pages, C., Caboche, J., and Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572.10.1523/JNEUROSCI.20-12-04563.2000Search in Google Scholar

De Jonge, M. and Racine, R.J. (1985). The effects of repeated induction of long-term potentiation in the dentate gyrus. Brain Res. 328, 181–185.10.1016/0006-8993(85)91341-1Search in Google Scholar

Deadwyler, S.A., Dunwiddie, T., and Lynch, G. (1987). A critical level of protein synthesis is required for long-term potentiation. Synapse 1, 90–95.10.1002/syn.890010112Search in Google Scholar

Debiec, J., LeDoux, J.E., and Nader, K. (2002). Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538.10.1016/S0896-6273(02)01001-2Search in Google Scholar

Del Cerro, S., Arai, A., Kessler, M., Bahr, B.A., Vanderklish, P., Rivera, S., and Lynch, G. (1994). Stimulation of NMDA receptors activates calpain in cultured hippocampal slices. Neurosci. Lett. 167, 149–152.10.1016/0304-3940(94)91049-9Search in Google Scholar

Dennis, P.B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S.C., and Thomas, G. (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105.10.1126/science.1063518Search in Google Scholar

Denny, J.B., Polan-Curtain, J., Ghuman, A., Wayner, M.J., and Armstrong, D.L. (1990). Calpain inhibitors block long-term potentiation. Brain Res. 534, 317–320.10.1016/0006-8993(90)90148-5Search in Google Scholar

Dewar, M.T., Cowan, N., and Sala, S.D. (2007). Forgetting due to retroactive interference: a fusion of Müller and Pilzecker’s (1900) early insights into everyday forgetting and recent research on anterograde amnesia. Cortex 43, 616–634.10.1016/S0010-9452(08)70492-1Search in Google Scholar

DiAntonio, A. and Hicke, L. (2004). Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223–246.10.1146/annurev.neuro.27.070203.144317Search in Google Scholar PubMed

Díaz-Trujillo, A., Contreras, J., Medina, A.C., Silveyra-Leon, G.A., Antaramian, A., Quirarte, G.L., and Prado-Alcalá, R.A. (2009). Enhanced inhibitory avoidance learning prevents the long-term memory-impairing effects of cycloheximide, a protein synthesis inhibitor. Neurobiol. Learn. Mem. 91, 310–314.10.1016/j.nlm.2008.10.006Search in Google Scholar PubMed

Djakovic, S.N., Schwarz, L.A., Barylko, B., DeMartino, G.N., and Patrick, G.N. (2009). Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655–26665.10.1074/jbc.M109.021956Search in Google Scholar PubMed PubMed Central

Dong, C., Upadhya, S.C., Ding, L., Smith, T.K., and Hegde, A.N. (2008). Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn. Mem. 15, 335–347.10.1101/lm.984508Search in Google Scholar PubMed PubMed Central

Dong, C., Bach, S.V., Haynes, K.A., and Hegde, A.N. (2014). Proteasome modulates positive and negative translational regulators in long-term synaptic plasticity. J. Neurosci. 34, 3171–3182.10.1523/JNEUROSCI.3291-13.2014Search in Google Scholar PubMed PubMed Central

Doyère, V. and Laroche, S. (1992). Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus 2, 39–48.10.1002/hipo.450020106Search in Google Scholar PubMed

Dudai, Y. (1995). On relevance of long-term potentiation to learning and memory. In: Brain and Memory. G. McGaugh, N. Weinberger and G. Lynch, eds. (New York: Oxford University Press), pp. 319–327.10.1093/acprof:oso/9780195082944.003.0019Search in Google Scholar

Dudai, Y. (1997). Time to remember. Neuron 18, 179–182.10.1016/S0896-6273(00)80257-3Search in Google Scholar

Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86.10.1146/annurev.psych.55.090902.142050Search in Google Scholar

Dudai, Y. and Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100.10.1016/j.neuron.2004.09.003Search in Google Scholar

Dudek, S.M. and Fields, R.D. (2002). Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99, 3962–3967.10.1073/pnas.062510599Search in Google Scholar

Dufner, A. and Thomas, G. (1999). Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109.10.1006/excr.1999.4683Search in Google Scholar

Dunn, A.J., Gray, H.E., and Iuvone, P.M. (1977). Protein synthesis and amnesia: studies with emetine and pactamycin. Pharmacol. Biochem. Behav. 6, 1–4.10.1016/0091-3057(77)90151-4Search in Google Scholar

Edwards, D.R. and Mahadevan, L.C. (1992). Protein synthesis inhibitors differentially superinduce c-fos and c-jun by three distinct mechanisms: lack of evidence for labile repressors. EMBO J. 11, 2415–2424.10.1002/j.1460-2075.1992.tb05306.xSearch in Google Scholar

Ehlers, M.R. (2000). CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2, 289–294.10.1016/S1286-4579(00)00299-9Search in Google Scholar

Ehlers, M.D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242.10.1038/nn1013Search in Google Scholar PubMed

Etlinger, J.D. and Goldberg, A.L. (1977). A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. USA 74, 54–58.10.1073/pnas.74.1.54Search in Google Scholar

Fagan, J.M. and Waxman, L. (1992). The ATP-independent pathway in red blood cells that degrades oxidant-damaged hemoglobin. J. Biol. Chem. 267, 23015–23022.10.1016/S0021-9258(18)50049-1Search in Google Scholar

Fanselow, M.S. (1997). Without LTP the learning circuit is broken. Behav. Brain Sci. 20, 616.10.1017/S0140525X97251599Search in Google Scholar

Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., and Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709.10.1038/381706a0Search in Google Scholar

Fioravante, D. and Byrne, J.H. (2011). Protein degradation and memory formation. Brain Res. Bull. 85, 14–20.10.1016/j.brainresbull.2010.11.002Search in Google Scholar

Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J., and Radulovic, J. (2004). Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966.10.1523/JNEUROSCI.5112-03.2004Search in Google Scholar

Fitzjohn, S.M., Bortolotto, Z.A., Palmer, M.J., Doherty, A.J., Ornstein, P.L., Schoepp, D.D., Kingston, A.E., Lodge, D., and Collingridge, G.L. (1998). The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 37, 1445–1458.10.1016/S0028-3908(98)00145-2Search in Google Scholar

Flexner, L.B. and Flexner, J.B. (1966). Effect of acetoxycycloheximide and of an acetoxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice. Proc. Natl. Acad. Sci. USA 55, 369–374.10.1073/pnas.55.2.369Search in Google Scholar PubMed PubMed Central

Flexner, J.B., Flexner, L.B., and Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin. Science 141, 57–59.10.1126/science.141.3575.57Search in Google Scholar PubMed

Flexner, L.B., Flexner, J.B., De La Haba, G., and Roberts, R.B. (1965). Loss of memory as related to inhibition of cerebral protein synthesis. J. Neurochem. 12, 535–541.10.1111/j.1471-4159.1965.tb04246.xSearch in Google Scholar PubMed

Flexner, L.B., Flexner, J.B., and Roberts, R.B. (1966). Stages of memory in mice treated with acetoxycycloheximide before or immediately after learning. Proc. Natl. Acad. Sci. USA 56, 730–735.10.1073/pnas.56.2.730Search in Google Scholar

Flood, J.F. and Jarvik, M.E. (1976). Drug influences on learning and memory. In: Neural Mechanisms of Learning and Memory. M. Rosenzweig and E. Bennet, eds. (Cambridge: The MIT Press), pp. 483–507.Search in Google Scholar

Flood, J.F., Bennett, E.L., Rosenzweig, M.R., and Orme, A.E. (1972). Influence of training strength on amnesia induced by pretraining injections of cycloheximide. Physiol. Behav. 9, 589–600.10.1016/0031-9384(72)90017-0Search in Google Scholar

Flood, J.F., Rosenzweig, M.R., Bennett, E.L., and Orme, A.E. (1973). The influence of duration of protein synthesis inhibition on memory. Physiol. Behav. 10, 555–562.10.1016/0031-9384(73)90221-7Search in Google Scholar

Flood, J.F., Bennett, E.L., Orme, A.E., and Rosenzweig, M.R. (1975). Effects of protein synthesis inhibition on memory for active avoidance training. Physiol. Behav. 14, 177–184.10.1016/0031-9384(75)90163-8Search in Google Scholar

Flood, J.F., Bennett, E.L., Orme, A.E., Rosenzweig, M.R., and Jarvik, M.E. (1978). Memory: modification of anisomycin-induced amnesia by stimulants and depressants. Science 199, 324–326.10.1126/science.619461Search in Google Scholar

Fonseca, R., Nägerl, U.V., Morris, R.G.M., and Bonhoeffer, T. (2004). Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44, 1011–1020.Search in Google Scholar

Fonseca, R., Nägerl, U.V., and Bonhoeffer, T. (2006a). Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat. Neurosci. 9, 478–480.10.1038/nn1667Search in Google Scholar

Fonseca, R., Vabulas, R.M., Hartl, F.U., Bonhoeffer, T., and Nägerl, U.V. (2006b). A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52, 239–245.10.1016/j.neuron.2006.08.015Search in Google Scholar

Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L., and Silva, A.J. (2004). The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883.10.1126/science.1094804Search in Google Scholar

Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J., and Eisen, M.B. (2004). Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137.10.1371/journal.pbio.0020137Search in Google Scholar

Frey, S. and Frey, J.U. (2008). ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog. Brain Res. 169, 117–143.10.1016/S0079-6123(07)00007-6Search in Google Scholar

Frey, U. and Morris, R.G. (1997). Synaptic tagging and long-term potentiation. Nature 385, 533–536.10.1038/385533a0Search in Google Scholar

Frey, U. and Morris, R.G. (1998a). Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188.10.1016/S0166-2236(97)01189-2Search in Google Scholar

Frey, U. and Morris, R.G. (1998b). Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37, 545–552.10.1016/S0028-3908(98)00040-9Search in Google Scholar

Frey, U., Krug, M., Reymann, K.G., and Matthies, H. (1988). Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65.10.1016/0006-8993(88)90008-XSearch in Google Scholar

Frey, U., Krug, M., Brödemann, R., Reymann, K., and Matthies, H. (1989). Long-term potentiation induced in dendrites separated from rat’s CA1 pyramidal somata does not establish a late phase. Neurosci. Lett. 97, 135–139.10.1016/0304-3940(89)90152-3Search in Google Scholar

Frey, U., Schroeder, H., and Matthies, H. (1990). Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 522, 69–75.10.1016/0006-8993(90)91578-5Search in Google Scholar

Frey, S., Schwiegert, C., Krug, M., and Lössner, B. (1991). Long-term potentiation induced changes in protein synthesis of hippocampal subfields of freely moving rats: time-course. Biomed. Biochim. Acta 50, 1231–1240.Search in Google Scholar

Frey, U., Huang, Y.Y., and Kandel, E.R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664.10.1126/science.8389057Search in Google Scholar

Frey, U., Schollmeier, K., Reymann, K.G., and Seidenbecher, T. (1995). Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience 67, 799–807.10.1016/0306-4522(95)00117-2Search in Google Scholar

Frey, U., Frey, S., Schollmeier, F., and Krug, M. (1996a). Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. 490, 703–711.10.1113/jphysiol.1996.sp021179Search in Google Scholar PubMed PubMed Central

Frey, U., Müller, M., and Kuhl, D. (1996b). A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J. Neurosci. 16, 2057–2063.10.1523/JNEUROSCI.16-06-02057.1996Search in Google Scholar

Fucci, L., Oliver, C.N., Coon, M.J., and Stadtman, E.R. (1983). Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc. Natl. Acad. Sci. USA 80, 1521–1525.10.1073/pnas.80.6.1521Search in Google Scholar

Fujii, S. and Sumikawa, K. (2001). Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus. Brain Res. 894, 347–353.10.1016/S0006-8993(01)02057-1Search in Google Scholar

Fujii, S., Saito, K., Miyakawa, H., Ito, K., and Kato, H. (1991). Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122.10.1016/0006-8993(91)90867-USearch in Google Scholar

Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., and Inokuchi, K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460.10.1016/S0896-6273(03)00206-XSearch in Google Scholar

Gall, C.M. and Lynch, G. (2005). Consolidation: a view from the synapse. In: Synaptic Plasticity and Transsynaptic Signaling. P.K. Stanton and H.E. Scharfman, eds. (New York: Springer Science), pp. 469–494.10.1007/0-387-25443-9_27Search in Google Scholar

Garcia-Osta, A., Tsokas, P., Pollonini, G., Landau, E.M., Blitzer, R., and Alberini, C.M. (2006). MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. J. Neurosci. 26, 7919–7932.10.1523/JNEUROSCI.1674-06.2006Search in Google Scholar

Gaskell, M.G. and Dumay, N. (2003). Lexical competition and the acquisition of novel words. Cognition 89, 105–132.10.1016/S0010-0277(03)00070-2Search in Google Scholar

Gelinas, J.N. and Nguyen, P.V. (2005). β-Adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J. Neurosci. 25, 3294–3303.10.1523/JNEUROSCI.4175-04.2005Search in Google Scholar PubMed PubMed Central

Geller, A., Robustelli, F., Barondes, S.H., Cohen, H.D., and Jarvik, M.E. (1969). Impaired performance by post-trial injections of cycloheximide in a passive avoidance task. Psychopharmacologia 14, 371–376.10.1007/BF00403577Search in Google Scholar PubMed

Gerard, R.W. (1949). Physiology and psychiatry. Am. J. Psychiatry 106, 161–173.10.1176/ajp.106.3.161Search in Google Scholar PubMed

Gibbs, M.E. and Ng, K.T. (1976). Memory formation: a new three-phase model. Neurosci. Lett. 2, 165–169.10.1016/0304-3940(76)90009-4Search in Google Scholar

Gibbs, M.E. and Ng, K.T. (1979). Similar effects of a monoamine oxidase inhibitor and a sympathomimetic amine on memory formation. Pharmacol. Biochem. Behav. 11, 335–339.10.1016/0091-3057(79)90145-XSearch in Google Scholar

Gladding, C.M., Fitzjohn, S.M., and Molnár, E. (2009). Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol. Rev. 61, 395–412.10.1124/pr.109.001735Search in Google Scholar PubMed PubMed Central

Glassman, E. (1969). The biochemistry of learning: an evaluation of the role of RNA and protein. Annu. Rev. Biochem. 38, 605–646.10.1146/annurev.bi.38.070169.003133Search in Google Scholar PubMed

Glickman, S.E. (1961). Perseverative neural processes and consolidation of the memory trace. Psychol. Bull. 58, 218–233.10.1037/h0044212Search in Google Scholar PubMed

Goelet, P., Castellucci, V.F., Schacher, S., and Kandel, E.R. (1986). The long and the short of long-term memory – a molecular framework. Nature 322, 419–422.10.1038/322419a0Search in Google Scholar PubMed

Gold, P.E. (2006). The many faces of amnesia. Learn. Mem. 13, 506–514.10.1101/lm.277406Search in Google Scholar PubMed

Gold, P.E. (2008). Protein synthesis inhibition and memory: formation vs amnesia. Neurobiol. Learn. Mem. 89, 201–211.10.1016/j.nlm.2007.10.006Search in Google Scholar PubMed PubMed Central

Gold, P.E. and McGaugh, J.L. (1975). A single-trace, two-process view of memory storage processes. In: Short-Term Memory. D. Deutsch and J.A. Deutsch, eds. (New York: Academic Press), pp. 355–378.Search in Google Scholar

Gold, P.E. and Sternberg, D.B. (1978). Retrograde amnesia produced by several treatments: evidence for a common neurobiological mechanism. Science 201, 367–369.10.1126/science.208153Search in Google Scholar PubMed

Gold, P.E. and Wrenn, S.M. (2012). Cycloheximide impairs and enhances memory depending on dose and footshock intensity. Behav. Brain Res. 233, 293–297.10.1016/j.bbr.2012.05.010Search in Google Scholar PubMed PubMed Central

Gold, P.E., Macri, J., and McGaugh, J.L. (1973). Retrograde amnesia gradients: effects of direct cortical stimulation. Science 179, 1343–1345.10.1126/science.179.4080.1343Search in Google Scholar

Gold, P., McIntyre, C., McNay, E., Stefani, M., and Korol, D. (2001). Neurochemical referees of dueling memory systems. In: Memory Consolidation. P.E. Gold and W.T. Greenough, eds. (Washington, DC: American Psychological Association), pp. 219–248.10.1037/10413-012Search in Google Scholar

Goldberg, A.L. (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17.10.1042/BST0350012Search in Google Scholar

Goldberg, A.L. and St John, A.C. (1976). Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 45, 747–803.10.1146/annurev.bi.45.070176.003531Search in Google Scholar

Grant, S.G., O’Dell, T.J., Karl, K.A., Stein, P.L., Soriano, P., and Kandel, E.R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910.10.1126/science.1361685Search in Google Scholar

Grecksch, G. and Matthies, H. (1980). Two sensitive periods for the amnesic effect of anisomycin. Pharmacol. Biochem. Behav. 12, 663–665.10.1016/0091-3057(80)90145-8Search in Google Scholar

Greenberg, A., Ward-Flanagan, R., Dickson, C.T., and Treit, D. (2014). ANI inactivation: unconditioned anxiolytic effects of anisomycin in the ventral hippocampus. Hippocampus 24, 1308–1316.10.1002/hipo.22312Search in Google Scholar

Greenough, W. (1984). Structural correlates of information storage in the mammalian brain: a review and hypothesis. Trends Neurosci. 7, 229–233.10.1016/S0166-2236(84)80211-8Search in Google Scholar

Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471.10.1038/386463a0Search in Google Scholar

Grollman, A.P. (1968). Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J. Biol. Chem. 243, 4089–4094.10.1016/S0021-9258(18)93283-7Search in Google Scholar

Grollman, A.P. and Huang, M. (1973). Inhibitors of protein synthesis in eukaryotes: tools in cell research. Fed. Proc. 32, 1673–1678.Search in Google Scholar

Grollman, A. and Huang, M. (1976). Inhibitors of protein synthesis in eukaryotes. In: Protein Synthesis. E.H. McConkey, ed. (New York: Marcel Dekker, Inc.), pp. 125–167.Search in Google Scholar

Grover, L.M. and Teyler, T.J. (1995). Different mechanisms may be required for maintenance of NMDA receptor-dependent and independent forms of long-term potentiation. Synapse 19, 121–133.10.1002/syn.890190208Search in Google Scholar

Gustafsson, B. and Wigström, H. (1990). Long-term potentiation in the hippocampal CA1 region: its induction and early temporal development. Prog. Brain Res. 83, 223–232.10.1016/S0079-6123(08)61252-2Search in Google Scholar

Habib, D. and Dringenberg, H.C. (2010). Surprising similarity between mechanisms mediating low (1 Hz)-and high (100 Hz)-induced long-lasting synaptic potentiation in CA1 of the intact hippocampus. Neuroscience 170, 489–496.10.1016/j.neuroscience.2010.06.074Search in Google Scholar

Hall, M.E., Schlesinger, K., and Stamm, E. (1976). Prevention of memory loss following puromycin treatment. Pharmacol. Biochem. Behav. 4, 353–355.10.1016/0091-3057(76)90256-2Search in Google Scholar

Hamakubo, T., Kannagi, R., Murachi, T., and Matus, A. (1986). Distribution of calpains I and II in rat brain. J. Neurosci. 6, 3103–3111.10.1523/JNEUROSCI.06-11-03103.1986Search in Google Scholar

Hamilton, R.T., Nilsen-Hamilton, M., and Adams, G. (1985). Superinduction by cycloheximide of mitogen-induced secreted proteins produced by BALB/c 3T3 cells. J. Cell. Physiol. 123, 201–208.10.1002/jcp.1041230208Search in Google Scholar PubMed

Hara, K.I. and Kitajima, T. (1997). LTP plays a distinct role in various brain structures. Behav. Brain Sci. 20, 620.10.1017/S0140525X97291594Search in Google Scholar

Hazzalin, C.A., Le Panse, R., Cano, E., and Mahadevan, L.C. (1998). Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Mol. Cell. Biol. 18, 1844–1854.10.1128/MCB.18.4.1844Search in Google Scholar PubMed PubMed Central

Hebb, D.O. (1949). The Organization of Behavior (New York: John Wiley & Sons).Search in Google Scholar

Hegde, A.N. (2004). Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog. Neurobiol. 73, 311–357.10.1016/j.pneurobio.2004.05.005Search in Google Scholar PubMed

Hegde, A.N. (2010). The ubiquitin-proteasome pathway and synaptic plasticity. Learn. Mem. 17, 314–327.10.1101/lm.1504010Search in Google Scholar PubMed PubMed Central

Helmstetter, F.J., Parsons, R.G., and Gafford, G.M. (2008). Macromolecular synthesis, distributed synaptic plasticity, and fear conditioning. Neurobiol. Learn. Mem. 89, 324–337.10.1016/j.nlm.2007.09.002Search in Google Scholar

Hernandez, P.J. and Abel, T. (2008). The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311.10.1016/j.nlm.2007.09.010Search in Google Scholar

Hershko, A. and Tomkins, G.M. (1971). Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J. Biol. Chem. 246, 710–714.10.1016/S0021-9258(18)62470-6Search in Google Scholar

Hesse, G.W., Hofstein, R., and Shashoua, V.E. (1984). Protein release from hippocampus in vitro. Brain Res. 305, 61–66.10.1016/0006-8993(84)91119-3Search in Google Scholar

Ho, N., Liauw, J.A., Blaeser, F., Wei, F., Hanissian, S., Muglia, L.M., Wozniak, D.F., Nardi, A., Arvin, K.L., Holtzman, D.M., et al. (2000). Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J. Neurosci. 20, 6459–6472.10.1523/JNEUROSCI.20-17-06459.2000Search in Google Scholar

Ho, O.H., Delgado, J.Y., and O’Dell, T.J. (2004). Phosphorylation of proteins involved in activity-dependent forms of synaptic plasticity is altered in hippocampal slices maintained in vitro. J. Neurochem. 91, 1344–1357.10.1111/j.1471-4159.2004.02815.xSearch in Google Scholar

Hoffman, K.B., Martinez, J., and Lynch, G. (1998). Proteolysis of cell adhesion molecules by serine proteases: a role in long term potentiation? Brain Res. 811, 29–33.10.1016/S0006-8993(98)00906-8Search in Google Scholar

Hoffman, J.F., Dodson, A., and Proverbio, F. (2009). On the functional use of the membrane compartmentalized pool of ATP by the Na+ and Ca++ pumps in human red blood cell ghosts. J. Gen. Physiol. 134, 351–361.10.1085/jgp.200910270Search in Google Scholar PubMed PubMed Central

Holscher, C. (2001). Long-term potentiation as a model for memory mechanisms. In: Neuronal Mechanisms of Memory Formation. C. Holscher, ed. (Cambridge: Cambridge University Press), pp. 1–34.Search in Google Scholar

Holzer, H. and Duntze, W. (1971). Metabolic regulation by chemical modification of enzymes. Annu. Rev. Biochem. 40, 345–374.10.1146/annurev.bi.40.070171.002021Search in Google Scholar PubMed

Hou, L., Antion, M.D., Hu, D., Spencer, C.M., Paylor, R., and Klann, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454.10.1016/j.neuron.2006.07.005Search in Google Scholar PubMed

Hoyt, M.A. and Coffino, P. (2004). Ubiquitin-free routes into the proteasome. Cell. Mol. Life Sci. 61, 1596–1600.10.1007/s00018-004-4133-9Search in Google Scholar

Huang, C.C. and Hsu, K.S. (2004). Local protein synthesis and GABAB receptors regulate the reversibility of long-term potentiation at murine hippocampal mossy fibre-CA3 synapses. J. Physiol. 561, 91–108.10.1113/jphysiol.2004.072546Search in Google Scholar

Huang, Y.Y. and Kandel, E.R. (1994). Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn. Mem. 1, 74–82.10.1101/lm.1.1.74Search in Google Scholar

Huang, Y.Y. and Kandel, E.R. (1996). Modulation of both the early and the late phase of mossy fiber LTP by the activation of β-adrenergic receptors. Neuron 16, 611–617.10.1016/S0896-6273(00)80080-XSearch in Google Scholar

Huang, Y.Y. and Kandel, E.R. (2006). Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn. Mem. 13, 298–306.10.1101/lm.166906Search in Google Scholar

Huang, Y.Y., Li, X.C., and Kandel, E.R. (1994). cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79, 69–79.10.1016/0092-8674(94)90401-4Search in Google Scholar

Huang, Y.Y., Bach, M.E., Lipp, H.P., Zhuo, M., Wolfer, D.P., Hawkins, R.D., Schoonjans, L., Kandel, E.R., Godfraind, J.M., Mulligan, R., et al. (1996). Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704.10.1073/pnas.93.16.8699Search in Google Scholar PubMed PubMed Central

Huang, C.C., Liang, Y.C., and Hsu, K.S. (1999). A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Neurosci. 19, 9728–9738.10.1523/JNEUROSCI.19-22-09728.1999Search in Google Scholar

Huang, Y.Y., Zakharenko, S.S., Schoch, S., Kaeser, P.S., Janz, R., Südhof, T.C., Siegelbaum, S.A., and Kandel, E.R. (2005). Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proc. Natl. Acad. Sci. USA 102, 9365–9370.10.1073/pnas.0503777102Search in Google Scholar PubMed PubMed Central

Huang, Q., Wang, H., Perry, S.W., and Figueiredo-Pereira, M.E. (2013). Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J. Biol. Chem. 288, 12161–12174.10.1074/jbc.M113.464552Search in Google Scholar PubMed PubMed Central

Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750.10.1073/pnas.122205699Search in Google Scholar

Huh, K.H. and Wenthold, R.J. (1999). Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J. Biol. Chem. 274, 151–157.10.1074/jbc.274.1.151Search in Google Scholar

Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738.10.1016/j.molcel.2007.11.019Search in Google Scholar

Impey, S., Mark, M., Villacres, E.C., Poser, S., Chavkin, C., and Storm, D.R. (1996). Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.10.1016/S0896-6273(00)80120-8Search in Google Scholar

Inda, M.C., Delgado-García, J.M., and Carrión, A.M. (2005). Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J. Neurosci. 25, 2070–2080.10.1523/JNEUROSCI.4163-04.2005Search in Google Scholar

Ingram, P.J., Stumpf, M.P.H., and Stark, J. (2006). Network motifs: structure does not determine function. BMC Genomics 7, 108.10.1186/1471-2164-7-108Search in Google Scholar

Ito, I., Sakimura, K., Mishina, M., and Sugiyama, H. (1996). Age-dependent reduction of hippocampal LTP in mice lacking N-methyl-D-aspartate receptor ε1 subunit. Neurosci. Lett. 203, 69–71.10.1016/0304-3940(95)12258-3Search in Google Scholar

Izquierdo, I. (1993). Long-term potentiation and the mechanisms of memory. Drug Dev. Res. 30, 1–17.10.1002/ddr.430300102Search in Google Scholar

Izquierdo, I., Bevilaqua, L.R.M., Rossato, J.I., Bonini, J.S., Medina, J.H., and Cammarota, M. (2006). Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 29, 496–505.10.1016/j.tins.2006.07.005Search in Google Scholar

Izumi, Y. and Zorumski, C.F. (1994). Developmental changes in the effects of metabotropic glutamate receptor antagonists on CA1 long-term potentiation in rat hippocampal slices. Neurosci. Lett. 176, 89–92.10.1016/0304-3940(94)90878-8Search in Google Scholar

James, W. (1984). Psychology: Briefer Course. (Cambridge: Harvard University Press).Search in Google Scholar

Jarome, T.J. and Helmstetter, F.J. (2013). The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol. Learn. Mem. 105, 107–116.10.1016/j.nlm.2013.03.009Search in Google Scholar

Jeffery, K.J., Abraham, W.C., Dragunow, M., and Mason, S.E. (1990). Induction of Fos-like immunoreactivity and the maintenance of long-term potentiation in the dentate gyrus of unanesthetized rats. Brain Res. Mol. Brain Res. 8, 267–274.10.1016/0169-328X(90)90039-GSearch in Google Scholar

Ji, Y., Pang, P.T., Feng, L., and Lu, B. (2005). Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat. Neurosci. 8, 164–172.10.1038/nn1381Search in Google Scholar

Jiang, Y.H., Armstrong, D., Albrecht, U., Atkins, C.M., Noebels, J.L., Eichele, G., Sweatt, J.D., and Beaudet, A.L. (1998). Mutation of the angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811.10.1016/S0896-6273(00)80596-6Search in Google Scholar

Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O., and Sarnow, P. (1999). Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl. Acad. Sci. USA 96, 13118–13123.10.1073/pnas.96.23.13118Search in Google Scholar

Johnstone, V.P.A. and Raymond, C.R. (2011). A protein synthesis and nitric oxide-dependent presynaptic enhancement in persistent forms of long-term potentiation. Learn. Mem. 18, 625–633.10.1101/lm.2245911Search in Google Scholar

Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S., and Davis, S. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.10.1038/85138Search in Google Scholar

Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell 157, 163–186.10.1016/j.cell.2014.03.001Search in Google Scholar

Kang, H. and Schuman, E.M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662.10.1126/science.7886457Search in Google Scholar

Kang, H., Welcher, A.A., Shelton, D., and Schuman, E.M. (1997). Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653–664.10.1016/S0896-6273(00)80378-5Search in Google Scholar

Kardalinou, E., Zhelev, N., Hazzalin, C.A., and Mahadevan, L.C. (1994). Anisomycin and rapamycin define an area upstream of p70/85S6k containing a bifurcation to histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction. Mol. Cell. Biol. 14, 1066–1074.Search in Google Scholar

Karpova, A., Mikhaylova, M., Thomas, U., Knöpfel, T., and Behnisch, T. (2006). Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J. Neurosci. 26, 4949–4955.10.1523/JNEUROSCI.4573-05.2006Search in Google Scholar

Kasahara, J., Fukunaga, K., and Miyamoto, E. (2001). Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region. J. Biol. Chem. 276, 24044–24050.10.1074/jbc.M100247200Search in Google Scholar

Kauer, J.A., Malenka, R.C., and Nicoll, R.A. (1988). NMDA application potentiates synaptic transmission in the hippocampus. Nature 334, 250–252.10.1038/334250a0Search in Google Scholar

Keith, J.R. and Rudy, J.W. (1990). Why NMDA-receptor-dependent long-term potentiation may not be a mechanism of learning and memory: reappraisal of the NMDA-receptor blockade strategy. Psychobiology 18, 251–257.10.3758/BF03327238Search in Google Scholar

Kelleher, R.J. 3rd, Govindarajan, A., Jung, H.-Y., Kang, H., and Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479.10.1016/S0092-8674(04)00115-1Search in Google Scholar

Kelly, M.T., Yao, Y., Sondhi, R., and Sacktor, T.C. (2007). Actin polymerization regulates the synthesis of PKMζ in LTP. Neuropharmacology 52, 41–45.10.1016/j.neuropharm.2006.07.002Search in Google Scholar PubMed

Khoutorsky, A., Yanagiya, A., Gkogkas, C.G., Fabian, M.R., Prager-Khoutorsky, M., Cao, R., Gamache, K., Bouthiette, F., Parsyan, A., Sorge, R.E., et al. (2013). Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 78, 298–311.10.1016/j.neuron.2013.02.025Search in Google Scholar PubMed

Kim, J.J. and Fanselow, M.S. (1992). Modality-specific retrograde amnesia of fear. Science 256, 675–677.10.1126/science.1585183Search in Google Scholar PubMed

Kirkwood, A., Silva, A., and Bear, M.F. (1997). Age-dependent decrease of synaptic plasticity in the neocortex of aCaMKII mutant mice. Proc. Natl. Acad. Sci. USA 94, 3380–3383.10.1073/pnas.94.7.3380Search in Google Scholar PubMed PubMed Central

Klann, E. and Sweatt, J.D. (2008). Altered protein synthesis is a trigger for long-term memory formation. Neurobiol. Learn. Mem. 89, 247–259.10.1016/j.nlm.2007.08.009Search in Google Scholar PubMed PubMed Central

Klann, E., Antion, M.D., Banko, J.L., and Hou, L. (2004). Synaptic plasticity and translation initiation. Learn. Mem. 11, 365–372.10.1101/lm.79004Search in Google Scholar

Kleim, J.A., Bruneau, R., Calder, K., Pocock, D., VandenBerg, P.M., MacDonald, E., Monfils, M.H., Sutherland, R.J., and Nader, K. (2003). Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 40, 167–176.10.1016/S0896-6273(03)00592-0Search in Google Scholar

Kleppisch, T., Wolfsgruber, W., Feil, S., Allmann, R., Wotjak, C.T., Goebbels, S., Nave, K.-A., Hofmann, F., and Feil, R. (2003). Hippocampal cGMP-dependent protein kinase I supports an age- and protein synthesis-dependent component of long-term potentiation but is not essential for spatial reference and contextual memory. J. Neurosci. 23, 6005–6012.10.1523/JNEUROSCI.23-14-06005.2003Search in Google Scholar

Koekkoek, S.K., Yamaguchi, K., Milojkovic, B.A., Dortland, B.R., Ruigrok, T.J., Maex, R., De Graaf, W., Smit, A.E., VanderWerf, F., Bakker, C.E., et al. (2005). Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron 47, 339–352.10.1016/j.neuron.2005.07.005Search in Google Scholar

Korol, D.L., Abel, T.W., Church, L.T., Barnes, C.A., and McNaughton, B.L. (1993). Hippocampal synaptic enhancement and spatial learning in the Morris swim task. Hippocampus 3, 127–132.10.1002/hipo.450030204Search in Google Scholar

Korte, M., Kang, H., Bonhoeffer, T., and Schuman, E. (1998). A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37, 553–559.10.1016/S0028-3908(98)00035-5Search in Google Scholar

Korz, V. and Frey, J.U. (2004). Emotional and cognitive reinforcement of rat hippocampal long-term potentiation by different learning paradigms. Neuron Glia Biol. 1, 253–261.10.1017/S1740925X05000153Search in Google Scholar

Kotaleski, J.H. and Blackwell, K.T. (2010). Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat. Rev. Neurosci. 11, 239–251.10.1038/nrn2807Search in Google Scholar

Kozak, M. (1980). Role of ATP in binding and migration of 40S ribosomal subunits. Cell 22, 459–467.10.1016/0092-8674(80)90356-6Search in Google Scholar

Kroker, K.S., Rast, G., and Rosenbrock, H. (2011a). Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP. Eur. J. Pharmacol. 671, 26–32.10.1016/j.ejphar.2011.09.167Search in Google Scholar PubMed

Kroker, K.S., Rosenbrock, H., and Rast, G. (2011b). A multi-slice recording system for stable late phase hippocampal long-term potentiation experiments. J. Neurosci. Methods 194, 394–401.10.1016/j.jneumeth.2010.11.006Search in Google Scholar

Krug, M., Lössner, B., and Ott, T. (1984). Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. Bull. 13, 39–42.10.1016/0361-9230(84)90005-4Search in Google Scholar

Kurotani, T., Higashi, S., Inokawa, H., and Toyama, K. (1996). Protein and RNA synthesis-dependent and -independent LTPs in developing rat visual cortex. Neuroreport 8, 35–39.10.1097/00001756-199612200-00008Search in Google Scholar

Lajtha, A. (1964). Protein Metabolism of the nervous system. Int. Rev. Neurobiol. 6, 1–98.10.1016/S0074-7742(08)60767-9Search in Google Scholar

Lanté, F., de Jésus Ferreira, M.-C., Guiramand, J., Récasens, M., and Vignes, M. (2006). Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus 16, 345–360.10.1002/hipo.20146Search in Google Scholar

Laroche, S., Doyere, V., and Bloch, V. (1989). Linear relation between the magnitude of long-term potentiation in the dentate gyrus and associative learning in the rat. A demonstration using commissural inhibition and local infusion of an N-methyl-D-aspartate receptor antagonist. Neuroscience 28, 375–386.10.1016/0306-4522(89)90184-XSearch in Google Scholar

Larson, J., Wong, D., and Lynch, G. (1986). Patterned stimulation at the θ frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368, 347–350.10.1016/0006-8993(86)90579-2Search in Google Scholar

Lattal, K.M. and Abel, T. (2001). Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J. Neurosci. 21, 5773–5780.10.1523/JNEUROSCI.21-15-05773.2001Search in Google Scholar

Lattal, K.M. and Abel, T. (2004). Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. Proc. Natl. Acad. Sci. USA 101, 4667–4672.10.1073/pnas.0306546101Search in Google Scholar PubMed PubMed Central

Lee, S.-H., Choi, J.-H., Lee, N., Lee, H.-R., Kim, J.-I., Yu, N.-K., Choi, S.-L., Lee, S.-H., Kim, H., and Kaang, B.-K. (2008). Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256.10.1126/science.1150541Search in Google Scholar PubMed

Lee, S.H., Kwak, C., Shim, J., Kim, J.E., Choi, S.L., Kim, H.F., Jang, D.J., Lee, J.A., Lee, K., Lee, C.H., et al. (2012). A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia. Proc. Natl. Acad. Sci. USA 109, 14200–14205.10.1073/pnas.1211997109Search in Google Scholar

Lehmann, H., Lecluse, V., Houle, A., and Mumby, D.G. (2006). Retrograde amnesia following hippocampal lesions in the shock-probe conditioning test. Hippocampus 16, 379–387.10.1002/hipo.20159Search in Google Scholar

Lehmann, H., Lacanilao, S., and Sutherland, R.J. (2007). Complete or partial hippocampal damage produces equivalent retrograde amnesia for remote contextual fear memories. Eur. J. Neurosci. 25, 1278–1286.10.1111/j.1460-9568.2007.05374.xSearch in Google Scholar

Li, S., Cullen, W.K., Anwyl, R., and Rowan, M.J. (2003). Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6, 526–531.10.1038/nn1049Search in Google Scholar

Ling, D.S.F., Benardo, L.S., Serrano, P.A., Blace, N., Kelly, M.T., Crary, J.F., and Sacktor, T.C. (2002). Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nat. Neurosci. 5, 295–296.10.1038/nn829Search in Google Scholar

Lipton, P. and Whittingham, T.S. (1984). Energy metabolism and brain slice function. In: Brain Slices. R. Dingledine, ed. (New York: Plenum Press), pp. 113–153.10.1007/978-1-4684-4583-1_6Search in Google Scholar

Lisman, J. (2003). Long-term potentiation: outstanding questions and attempted synthesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 829–842.10.1098/rstb.2002.1242Search in Google Scholar

Lisman, J., Raghavachari, S., Otmakhov, N., and Otmakhova, N. (2005). The phases of LTP: the new complexities. In: Synaptic Plasticity and Transsynaptic Signaling. P. Stanton, C. Bramham and H. Scharfman, eds. (Springer: US), pp. 343–357.10.1007/0-387-25443-9_20Search in Google Scholar

Little, Z., Grover, L.M., and Teyler, T.J. (1995). Metabotropic glutamate receptor antagonist, (R,S)-α-methyl-4-carboxyphenyglycine, blocks two distinct forms of long-term potentiation in area CA1 of rat hippocampus. Neurosci. Lett. 201, 73–76.10.1016/0304-3940(95)12141-PSearch in Google Scholar

Loftus, E. and Yuille, J. (1984). Departures from reality in human perception and memory. In: Memory Consolidation: Psychobiology of Cognition. H. Weingartner and E. Parker, eds. (Hillsdale: Lawrence Erlbaum Associates), pp. 163–184.Search in Google Scholar

Lopez, J., Gamache, K., Schneider, R., and Nader, K. (2015). Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J. Neurosci. 35, 2465–2475.10.1523/JNEUROSCI.0735-14.2015Search in Google Scholar PubMed PubMed Central

Lovinger, D.M., Wong, K.L., Murakami, K., and Routtenberg, A. (1987). Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res. 436, 177–183.10.1016/0006-8993(87)91573-3Search in Google Scholar

Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533–539.10.1126/science.7725097Search in Google Scholar PubMed

Lu, Y.F., Kandel, E.R., and Hawkins, R.D. (1999). Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci. 19, 10250–10261.10.1523/JNEUROSCI.19-23-10250.1999Search in Google Scholar

Lu, X., Wyszynski, M., Sheng, M., and Baudry, M. (2001). Proteolysis of glutamate receptor-interacting protein by calpain in rat brain: implications for synaptic plasticity. J. Neurochem. 77, 1553–1560.10.1046/j.1471-4159.2001.00359.xSearch in Google Scholar PubMed

Lynch, M.A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87–136.10.1152/physrev.00014.2003Search in Google Scholar PubMed

Lynch, G. and Baudry, M. (1984a). Between model systems and memory: the use of physiological plasticity in hippocampus to identify cellular chemistries involved in memory storage. In: Neuropsychology of Memory. L. Squire and N. Butters, eds. (New York: The Guilford Press), pp. 513–520.Search in Google Scholar

Lynch, G. and Baudry, M. (1984b). The biochemistry of memory: a new and specific hypothesis. Science 224, 1057–1063.10.1126/science.6144182Search in Google Scholar PubMed

Lynch, G. and Staubli, U. (1990). Reply to Rudy and Keith. Psychobiology 18, 369.10.3758/BF03327254Search in Google Scholar

Lynch, G., Kramar, E.A., Rex, C.S., Jia, Y., Chappas, D., Gall, C.M., and Simmons, D.A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J. Neurosci. 27, 4424–4434.10.1523/JNEUROSCI.5113-06.2007Search in Google Scholar PubMed PubMed Central

Lynch, G., Rex, C.S., Chen, L.Y., and Gall, C.M. (2008). The substrates of memory: defects, treatments, and enhancement. Eur. J. Pharmacol. 585, 2–13.10.1016/j.ejphar.2007.11.082Search in Google Scholar PubMed PubMed Central

Ma’ayan, A. (2009). Insights into the organization of biochemical regulatory networks using graph theory analyses. J. Biol. Chem. 284, 5451–5455.10.1074/jbc.R800056200Search in Google Scholar PubMed PubMed Central

Mabb, A.M. and Ehlers, M.D. (2010). Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol. 26, 179–210.10.1146/annurev-cellbio-100109-104129Search in Google Scholar

Madani, R., Hulo, S., Toni, N., Madani, H., Steimer, T., Muller, D., and Vassalli, J.D. (1999). Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 3007–3012.10.1093/emboj/18.11.3007Search in Google Scholar

Mahadevan, L.C., Willis, A.C., and Barratt, M.J. (1991). Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783.10.1016/0092-8674(91)90385-CSearch in Google Scholar

Maldonado, H., Jaffé, K., and Baldérrama, N. (1979). The dynamics of learning in the praying mantis (Stagmatoptera biocellata). J. Insect Physiol. 25, 525–533.10.1016/S0022-1910(79)80011-6Search in Google Scholar

Malenka, R.C. (1991). Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6, 53–60.10.1016/0896-6273(91)90121-FSearch in Google Scholar

Malenka, R.C. (1994). Multiple forms of NMDA receptor-dependent synaptic plasticity in the hippocampus. In: Long-term Potentiation. M. Baudry and J.L. Davis, eds. (Cambridge: A Bradford Book), pp. 121–141.Search in Google Scholar

Malenka, R.C. and Nicoll, R.A. (1999). Long-term potentiation – a decade of progress? Science 285, 1870–1874.10.1126/science.285.5435.1870Search in Google Scholar

Malinow, R., Madison, D.V., and Tsien, R.W. (1988). Persistent protein kinase activity underlying long-term potentiation. Nature 335, 820–824.10.1038/335820a0Search in Google Scholar

Malinow, R., Schulman, H., and Tsien, R.W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.10.1126/science.2549638Search in Google Scholar

Malleret, G., Haditsch, U., Genoux, D., Jones, M.W., Bliss, T.V., Vanhoose, A.M., Weitlauf, C., Kandel, E.R., Winder, D.G., and Mansuy, I.M. (2001). Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686.10.1016/S0092-8674(01)00264-1Search in Google Scholar

Manabe, T., Noda, Y., Mamiya, T., Katagiri, H., Houtani, T., Nishi, M., Noda, T., Takahashi, T., Sugimoto, T., Nabeshima, T., et al. (1998). Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Nature 394, 577–581.10.1038/29073Search in Google Scholar PubMed

Manabe, T., Togashi, H., Uchida, N., Suzuki, S.C., Hayakawa, Y., Yamamoto, M., Yoda, H., Miyakawa, T., Takeichi, M., and Chisaka, O. (2000). Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci. 15, 534–546.10.1006/mcne.2000.0849Search in Google Scholar

Mansuy, I.M., Winder, D.G., Moallem, T.M., Osman, M., Mayford, M., Hawkins, R.D., and Kandel, E.R. (1998). Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21, 257–265.10.1016/S0896-6273(00)80533-4Search in Google Scholar

Manzoni, O.J., Weisskopf, M.G., and Nicoll, R.A. (1994). MCPG antagonizes metabotropic glutamate receptors but not long-term potentiation in the hippocampus. Eur. J. Neurosci. 6, 1050–1054.10.1111/j.1460-9568.1994.tb00599.xSearch in Google Scholar

Mao, I., Liu, J., Li, X., and Luo, H. (2008). REGγ, a proteasome activator and beyond? Cell. Mol. Life Sci. 65, 3971–3980.10.1007/s00018-008-8291-zSearch in Google Scholar

Maren, S., DeCola, J.P., Swain, R.A., Fanselow, M.S., and Thompson, R.F. (1994). Parallel augmentation of hippocampal long-term potentiation, θ rhythm, and contextual fear conditioning in water-deprived rats. Behav. Neurosci. 108, 44–56.10.1037/0735-7044.108.1.44Search in Google Scholar

Martin, S.J. (1998). Time-dependent reversal of dentate LTP by 5 Hz stimulation. Neuroreport 9, 3775–3781.10.1097/00001756-199812010-00003Search in Google Scholar

Martin, S.J., Grimwood, P.D., and Morris, R.G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711.10.1146/annurev.neuro.23.1.649Search in Google Scholar

Martin, S.J., de Hoz, L., and Morris, R.G.M. (2005). Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychologia 43, 609–624.10.1016/j.neuropsychologia.2004.07.007Search in Google Scholar

Martinez, J., Jr., Jensen, R.A., and McGaugh, J.L. (1981). Attenuation of experimentally-induced amnesia. Prog. Neurobiol. 16, 155–186.10.1016/0301-0082(81)90011-3Search in Google Scholar

Matsushita, M., Tomizawa, K., Moriwaki, A., Li, S.T., Terada, H., and Matsui, H. (2001). A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J. Neurosci. 21, 6000–6007.10.1523/JNEUROSCI.21-16-06000.2001Search in Google Scholar

Matthies, H. (1973). Biochemical regulation of synaptic connectivity. In: Memory and Transfer of Information. H. Zippel, ed. (New York: Plenum Press), pp. 531–547.10.1007/978-1-4684-2052-4_25Search in Google Scholar

Matthies, H. (1974). The biochemical basis of learning and memory. Life Sci. 15, 2017–2031.10.1016/0024-3205(74)90019-8Search in Google Scholar

Matthies, H. (1988). Long-term synaptic potentiation and macromolecular changes in memory formation. In: Synaptic Plasticity in the Hippocampus. H. Haas and G. Buzsaki, eds. (Berlin: Springer-Verlag), pp. 119–121.10.1007/978-3-642-73202-7_35Search in Google Scholar

Matthies, H. (1989). In search of cellular mechanisms of memory. Prog. Neurobiol. 32, 277–349.10.1016/0301-0082(89)90024-5Search in Google Scholar

Matthies, H. and Reymann, K.G. (1993). Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4, 712–714.10.1097/00001756-199306000-00028Search in Google Scholar PubMed

Matthies, H., Frey, U., Reymann, K., Krug, M., Jork, R., and Schroeder, H. (1990). Different mechanisms and multiple stages of LTP. Adv. Exp. Med. Biol. 268, 359–368.10.1007/978-1-4684-5769-8_39Search in Google Scholar PubMed

Matthies, H., Becker, A., Schröeder, H., Kraus, J., Höllt, V., and Krug, M. (1997). Dopamine D1-deficient mutant mice do not express the late phase of hippocampal long-term potentiation. Neuroreport 8, 3533–3535.10.1097/00001756-199711100-00023Search in Google Scholar PubMed

Matties, G. (1972). Pharmacological influence on the teaching and memorization processes. Farmakol. Toksikol. 35, 259–265.Search in Google Scholar

Matzel, L.D., Talk, A.C., Muzzio, I.A., and Rogers, R.F. (1998). Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation. Rev. Neurosci. 9, 129–167.10.1515/REVNEURO.1998.9.3.129Search in Google Scholar PubMed

Maviel, T., Durkin, T.P., Menzaghi, F., and Bontempi, B. (2004). Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99.10.1126/science.1098180Search in Google Scholar PubMed

McClelland, J.L., McNaughton, B.L., and O’Reilly, R.C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457.10.1037/0033-295X.102.3.419Search in Google Scholar PubMed

McEachern, J.C. and Shaw, C.A. (1996). An alternative to the LTP orthodoxy: a plasticity-pathology continuum model. Brain Res. Brain Res. Rev. 22, 51–92.10.1016/0165-0173(96)00006-9Search in Google Scholar

McGaugh, J.L. (1966). Time-dependent processes in memory storage. Science 153, 1351–1358.10.1126/science.153.3742.1351Search in Google Scholar

McGaugh, J.L. and Dawson, R.G. (1971). Modification of memory storage processes. In: Animal Memory. W.K. Honig and P.H.R. James, eds. (New York: Academic Press), pp. 215–242.10.1016/B978-0-12-355050-7.50010-2Search in Google Scholar

McGaugh, J.L. and Herz, M.J. (1972). Memory Consolidation. San Francisco: Albion Publishing Company.Search in Google Scholar

McNaughton, B.L. (1993). The mechanism of expression of long-term enhancement of hippocampal synapses: current issues and theoretical implications. Annu. Rev. Physiol. 55, 375–396.10.1146/annurev.ph.55.030193.002111Search in Google Scholar

McNaughton, B.L., Douglas, R.M., and Goddard, G.V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res. 157, 277–293.10.1016/0006-8993(78)90030-6Search in Google Scholar

Meeter, M. and Murre, J.M.J. (2004). Consolidation of long-term memory: evidence and alternatives. Psychol. Bull. 130, 843–857.10.1037/0033-2909.130.6.843Search in Google Scholar

Mei, F., Nagappan, G., Ke, Y., Sacktor, T.C., and Lu, B. (2011). BDNF facilitates L-LTP maintenance in the absence of protein synthesis through PKMζ. PLoS One 6, e21568.10.1371/journal.pone.0021568Search in Google Scholar

Mendez, R., Murthy, K.G., Ryan, K., Manley, J.L., and Richter, J.D. (2000). Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259.10.1016/S1097-2765(00)00121-0Search in Google Scholar

Meng, J., Meng, Y., Hanna, A., Janus, C., and Jia, Z. (2005). Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J. Neurosci. 25, 6641–6650.10.1523/JNEUROSCI.0028-05.2005Search in Google Scholar PubMed PubMed Central

Menzel, R., Gaio, U., Gerberding, M., Nerarava, E., and Wittstock, S. (1993). Formation of long term olfactory memory in honeybees does not require protein synthesis. Naturwissenschaften 80, 380–382.10.1007/BF01138799Search in Google Scholar

Messaoudi, E., Kanhema, T., Soulé, J., Tiron, A., Dagyte, G., da Silva, B., and Bramham, C.R. (2007). Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 27, 10445–10455.10.1523/JNEUROSCI.2883-07.2007Search in Google Scholar

Miller, V.M., and Best, P.J. (1980). Spatial correlates of hippocampal unit activity are altered by lesions of the fornix and endorhinal cortex. Brain Res. 194, 311–323.10.1016/0006-8993(80)91214-7Search in Google Scholar

Miller, R.R. and Matzel, L.D. (2000). Memory involves far more than ‘consolidation’. Nat. Rev. Neurosci. 1, 214–216.10.1038/35044578Search in Google Scholar

Miller, S., Yasuda, M., Coats, J.K., Jones, Y., Martone, M.E., and Mayford, M. (2002). Disruption of dendritic translation of CaMKIIa impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519.10.1016/S0896-6273(02)00978-9Search in Google Scholar

Miyashita, T., Kubik, S., Lewandowski, G., and Guzowski, J.F. (2008). Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol. Learn. Mem. 89, 269–284.10.1016/j.nlm.2007.08.012Search in Google Scholar

Mochida, H., Sato, K., Sasaki, S., Yazawa, I., Kamino, K., and Momose-Sato, Y. (2001). Effects of anisomycin on LTP in the hippocampal CA1: long-term analysis using optical recording. Neuroreport 12, 987–991.10.1097/00001756-200104170-00025Search in Google Scholar

Mody, I., Baimbridge, K.G., and Miller, J.J. (1984). Blockade of tetanic- and calcium-induced long-term potentiation in the hippocampal slice preparation by neuroleptics. Neuropharmacology 23, 625–631.10.1016/0028-3908(84)90142-4Search in Google Scholar

Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R., and Schacher, S. (1986). A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254.10.1126/science.3775383Search in Google Scholar PubMed

Morgan, S.L. and Teyler, T.J. (2001). Electrical stimuli patterned after the θ-rhythm induce multiple forms of LTP. J. Neurophysiol. 86, 1289–1296.10.1152/jn.2001.86.3.1289Search in Google Scholar PubMed

Morley, S.J. and McKendrick, L. (1997). Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J. Biol. Chem. 272, 17887–17893.10.1074/jbc.272.28.17887Search in Google Scholar PubMed

Morris, R. (1990). It’s heads they win, tails I lose! Psychobiology 18, 261–266.10.3758/BF03327240Search in Google Scholar

Moser, E.I., Krobert, K.A., Moser, M.B., and Morris, R.G. (1998). Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038–2042.10.1126/science.281.5385.2038Search in Google Scholar

Müller, G. and Pilzecker, A. (1900). Experimentelle beiträge zur lehre vom gedächtnis. Z. Psychol. Ergänz. 1, 1–300.Search in Google Scholar

Muller, D., Turnbull, J., Baudry, M., and Lynch, G. (1988). Phorbol ester-induced synaptic facilitation is different than long-term potentiation. Proc. Natl. Acad. Sci. USA 85, 6997–7000.10.1073/pnas.85.18.6997Search in Google Scholar

Mumby, D.G., Astur, R.S., Weisend, M.P., and Sutherland, R.J. (1999). Retrograde amnesia and selective damage to the hippocampal formation: memory for places and object discriminations. Behav. Brain Res. 106, 97–107.10.1016/S0166-4328(99)00097-2Search in Google Scholar

Musti, A.M., Treier, M., and Bohmann, D. (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275, 400–402.10.1126/science.275.5298.400Search in Google Scholar

Nadel, L. and Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227.10.1016/S0959-4388(97)80010-4Search in Google Scholar

Nakajima, S. (1975). Amnesic effect of cycloheximide in the mouse mediated by adrenocortical hormones. J. Comp. Physiol. Psychol. 88, 378–385.10.1037/h0076207Search in Google Scholar PubMed

Navakkode, S., Sajikumar, S., and Frey, J.U. (2004). The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging. J. Neurosci. 24, 7740–7744.10.1523/JNEUROSCI.1796-04.2004Search in Google Scholar PubMed PubMed Central

Nayak, A., Zastrow, D.J., Lickteig, R., Zahniser, N.R., and Browning, M.D. (1998). Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394, 680–683.10.1038/29305Search in Google Scholar PubMed

Nguyen, P.V. and Kandel, E.R. (1996). A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189–3198.10.1523/JNEUROSCI.16-10-03189.1996Search in Google Scholar

Nguyen, P.V. and Kandel, E.R. (1997). Brief θ-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn. Mem. 4, 230–243.10.1101/lm.4.2.230Search in Google Scholar

Nguyen, P.V., Abel, T., and Kandel, E.R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107.10.1126/science.8066450Search in Google Scholar

Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E.T., Vivien, D., and Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64.10.1038/83358Search in Google Scholar

Niewoehner, B., Single, F.N., Hvalby, Ø., Jensen, V., Meyer zum Alten Borgloh, S., Seeburg, P.H., Rawlins, J.N.P., Sprengel, R., and Bannerman, D.M. (2007). Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur. J. Neurosci. 25, 837–846.10.1111/j.1460-9568.2007.05312.xSearch in Google Scholar

Nosyreva, E.D. and Huber, K.M. (2005). Developmental switch in synaptic mechanisms of hippocampal metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 25, 2992–3001.10.1523/JNEUROSCI.3652-04.2005Search in Google Scholar

Nosyreva, E.D., and Huber, K.M. (2006). Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J. Neurophysiol. 95, 3291–3295.10.1152/jn.01316.2005Search in Google Scholar

O’Carroll, C.M. and Morris, R.G.M. (2004). Heterosynaptic co-activation of glutamatergic and dopaminergic afferents is required to induce persistent long-term potentiation. Neuropharmacology 47, 324–332.10.1016/j.neuropharm.2004.04.005Search in Google Scholar

O’Connor, J.J., Rowan, M.J., and Anwyl, R. (1995). Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors. J. Neurosci. 15, 2013–2020.10.1523/JNEUROSCI.15-03-02013.1995Search in Google Scholar

O’Dell, T.J., Kandel, E.R., and Grant, S.G. (1991). Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–560.10.1038/353558a0Search in Google Scholar

O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109.10.1016/0014-4886(76)90055-8Search in Google Scholar

O’Keefe, J. and Conway, D. (1978). Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590.10.1007/BF00239813Search in Google Scholar

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map (Oxford: Clarendon Press).Search in Google Scholar

O’Reilly, R.C. and Rudy, J.W. (2000). Computational principles of learning in the neocortex and hippocampus. Hippocampus 10, 389–397.10.1002/1098-1063(2000)10:4<389::AID-HIPO5>3.0.CO;2-PSearch in Google Scholar

Okabe, S., Collin, C., Auerbach, J.M., Meiri, N., Bengzon, J., Kennedy, M.B., Segal, M., and McKay, R.D. (1998). Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J. Neurosci. 18, 4177–4188.10.1523/JNEUROSCI.18-11-04177.1998Search in Google Scholar

Oliet, S.H., Malenka, R.C., and Nicoll, R.A. (1997). Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982.10.1016/S0896-6273(00)80336-0Search in Google Scholar

Oliver, G.W., Rose, G.P., Brimblecombe, R.W., and Livett, B.H. (1979). Analysis of Y-maze learning in mice using cycloheximide. Gen. Pharmacol. 10, 489–497.10.1016/0306-3623(79)90014-4Search in Google Scholar

Oliver, M.W., Baudry, M., and Lynch, G. (1989). The protease inhibitor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res. 505, 233–238.10.1016/0006-8993(89)91448-0Search in Google Scholar

Olton, D., Shapiro, M., and Hulse, S. (1984). Working memory of serial patterns. In: Animal Cognition. H. Roitblat, T. Bever and H. Terrace, eds. (Hillsdale: Lawrence Erlbaum Associates Publishers), pp. 171–182.Search in Google Scholar

Orlowski, M. and Wilk, S. (2003). Ubiquitin-independent proteolytic functions of the proteasome. Arch. Biochem. Biophys. 415, 1–5.10.1016/S0003-9861(03)00197-8Search in Google Scholar

Orrego, F. and Lipmann, F. (1967). Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids. J. Biol. Chem. 242, 665–671.10.1016/S0021-9258(18)96256-3Search in Google Scholar

Osten, P., Valsamis, L., Harris, A., and Sacktor, T.C. (1996). Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation. J. Neurosci. 16, 2444–2451.10.1523/JNEUROSCI.16-08-02444.1996Search in Google Scholar

Otani, S., Marshall, C., Tate, W., Goddard, G., and Abraham, W. (1989). Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519–526.10.1016/0306-4522(89)90001-8Search in Google Scholar

Otani, S., Roisin-Lallemand, M.P., and Ben-Ari, Y. (1992). Enhancement of extracellular protein concentrations during long-term potentiation in the rat hippocampal slice. Neuroscience 47, 265–272.10.1016/0306-4522(92)90242-TSearch in Google Scholar

Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W.-H., Hempstead, B.L., and Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491.10.1126/science.1100135Search in Google Scholar

Panja, D. and Bramham, C.R. (2014). BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76, 664–676.10.1016/j.neuropharm.2013.06.024Search in Google Scholar

Park, S., Park, J.M., Kim, S., Kim, J.A., Shepherd, J.D., Smith-Hicks, C.L., Chowdhury, S., Kaufmann, W., Kuhl, D., Ryazanov, A.G., et al. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83.10.1016/j.neuron.2008.05.023Search in Google Scholar

Park, P., Volianskis, A., Sanderson, T.M., Bortolotto, Z.A., Jane, D.E., Zhuo, M., Kaang, B.-K., and Collingridge, G.L. (2013). NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130131.10.1098/rstb.2013.0131Search in Google Scholar

Parsons, R.G., Gafford, G.M., and Helmstetter, F.J. (2006). Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983.10.1523/JNEUROSCI.4209-06.2006Search in Google Scholar

Parvez, S., Ramachandran, B., and Frey, J.U. (2010a). Functional differences between and across different regions of the apical branch of hippocampal CA1 dendrites with respect to long-term depression induction and synaptic cross-tagging. J. Neurosci. 30, 5118–5123.10.1523/JNEUROSCI.5808-09.2010Search in Google Scholar

Parvez, S., Ramachandran, B., and Frey, J.U. (2010b). Properties of subsequent induction of long-term potentiation and/or depression in one synaptic input in apical dendrites of hippocampal CA1 neurons in vitro. Neuroscience 171, 712–720.10.1016/j.neuroscience.2010.09.018Search in Google Scholar

Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C., and Kandel, E.R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145.10.1016/S0896-6273(00)80140-3Search in Google Scholar

Paulus, H. and Alpers, J.B. (1971). Preconditioning: an obligatory step in the biosynthesis of oligomeric enzymes and its promotion by allosteric ligands. Enzyme 12, 385–401.10.1159/000459564Search in Google Scholar PubMed

Popov, N.S., Reymann, K.G., Schulzeck, K., Schulzeck, S., and Matthies, H. (1988). Alterations in calmodulin content in fractions of rat hippocampal slices during tetanic- and calcium-induced long-term potentiation. Brain Res. Bull. 21, 201–206.10.1016/0361-9230(88)90232-8Search in Google Scholar

Power, A.E., Berlau, D.J., McGaugh, J.L., and Steward, O. (2006). Anisomycin infused into the hippocampus fails to block ‘reconsolidation’ but impairs extinction: the role of re-exposure duration. Learn. Mem. 13, 27–34.10.1101/lm.91206Search in Google Scholar

Proverbio, F. and Hoffman, J.F. (1977). Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J. Gen. Physiol. 69, 605–632.10.1085/jgp.69.5.605Search in Google Scholar

Qi, Z. and Gold, P.E. (2009). Intrahippocampal infusions of anisomycin produce amnesia: contribution of increased release of norepinephrine, dopamine, and acetylcholine. Learn. Mem. 16, 308–314.10.1101/lm.1333409Search in Google Scholar

Qi, M., Zhuo, M., Skålhegg, B.S., Brandon, E.P., Kandel, E.R., McKnight, G.S., and Idzerda, R.L. (1996). Impaired hippocampal plasticity in mice lacking the Cb1 catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 93, 1571–1576.10.1073/pnas.93.4.1571Search in Google Scholar

Quartermain, D. (1976). The influence of drugs on learning and memory. In: Neural Mechanisms of Learning and Memory. M. Rosenzweig and E. Bennett, eds. (Cambridge: The MIT Press), pp. 508–518.Search in Google Scholar

Quartermain, D. and Botwinick, C.Y. (1975). Role of the biogenic amines in the reversal of cycloheximide-induced amnesia. J. Comp. Physiol. Psychol. 88, 386–401.10.1037/h0076208Search in Google Scholar

Quartermain, D., and McEwen, B.S. (1970). Temporal characteristics of amnesia induced by protein synthesis inhibitor: determination by shock level. Nature 228, 677–678.10.1038/228677a0Search in Google Scholar

Quartermain, D., McEwen, B.S., and Azmitia, E., Jr. (1972). Recovery of memory following amnesia in the rat and mouse. J. Comp. Physiol. Psychol. 79, 360–370.10.1037/h0032810Search in Google Scholar

Quevedo, J., Vianna, M.R., Roesler, R., de-Paris, F., Izquierdo, I., and Rose, S.P. (1999). Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn. Mem. 6, 600–607.10.1101/lm.6.6.600Search in Google Scholar

Racine, R.J. and de Jonge, M. (1988). Short-term and long-term potentiation in projection pathways and local circuits. In: Long-term Potentiation: From Biophysics to Behavior. P.W. Landfield and S.A. Deadwyler, eds. (New York: Alan R. Liss), pp. 167–197.Search in Google Scholar

Racine, R.J., Milgram, N.W., and Hafner, S. (1983). Long-term potentiation phenomena in the rat limbic forebrain. Brain Res. 260, 217–231.10.1016/0006-8993(83)90676-5Search in Google Scholar

Radulovic, J. and Tronson, N.C. (2008). Protein synthesis inhibitors, gene superinduction and memory: too little or too much protein? Neurobiol. Learn. Mem. 89, 212–218.10.1016/j.nlm.2007.08.008Search in Google Scholar

Rainbow, T.C., Adler, J.E., and Flexner, L.B. (1976). Comparison in mice of the amnestic effects of cycloheximide and 6-hydroxydopamine in a one-trial passive avoidance task. Pharmacol. Biochem. Behav. 4, 347–349.10.1016/0091-3057(76)90254-9Search in Google Scholar

Rainbow, T.C., Hoffman, P.L., and Flexner, L.B. (1980). Studies of memory: a reevaluation in mice of the effects of inhibitors on the rate of synthesis of cerebral proteins as related to amnesia. Pharmacol. Biochem. Behav. 12, 79–84.10.1016/0091-3057(80)90419-0Search in Google Scholar

Randt, C.T., Barnett, B.M., McEwen, B.S., and Quartermain, D. (1971). Amnesic effects of cycloheximide on two strains of mice with different memory characteristics. Exp. Neurol. 30, 467–474.10.1016/0014-4886(71)90147-6Search in Google Scholar

Randt, C.T., Korein, J., and Levidow, L. (1973). Localization of action of two amnesia producing drugs in freely moving mice. Exp. Neurol. 41, 628–634.10.1016/0014-4886(73)90055-1Search in Google Scholar

Raymond, C.R. (2007). LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci. 30, 167–175.10.1016/j.tins.2007.01.007Search in Google Scholar PubMed

Raymond, C.R. and Redman, S.J. (2006). Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J. Physiol. 570, 97–111.10.1113/jphysiol.2005.098947Search in Google Scholar PubMed PubMed Central

Raymond, C.R., Thompson, V.L., Tate, W.P., and Abraham, W.C. (2000). Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J. Neurosci. 20, 969–976.10.1523/JNEUROSCI.20-03-00969.2000Search in Google Scholar

Rechsteiner, M. (1987). Ubiquitin-mediated pathways for intracellular proteolysis. Annu. Rev. Cell Biol. 3, 1–30.10.1146/annurev.cb.03.110187.000245Search in Google Scholar PubMed

Redondo, R.L., Okuno, H., Spooner, P.A., Frenguelli, B.G., Bito, H., and Morris, R.G.M. (2010). Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J. Neurosci. 30, 4981–4989.10.1523/JNEUROSCI.3140-09.2010Search in Google Scholar PubMed PubMed Central

Reymann, K.G. (1997). As in long-term memory, LTP is consolidated by reinforcers. Behav. Brain Sci. 20, 627–628.10.1017/S0140525X9738159XSearch in Google Scholar

Reymann, K.G. and Frey, J.U. (2007). The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52, 24–40.10.1016/j.neuropharm.2006.07.026Search in Google Scholar

Reymann, K.G., Malisch, R., Schulzeck, K., Brödemann, R., Ott, T., and Matthies, H. (1985). The duration of long-term potentiation in the CA1 region of the hippocampal slice preparation. Brain Res. Bull. 15, 249–255.10.1016/0361-9230(85)90147-9Search in Google Scholar

Reymann, K.G., Brödemann, R., Kase, H., and Matthies, H. (1988a). Inhibitors of calmodulin and protein kinase C block different phases of hippocampal long-term potentiation. Brain Res. 461, 388–392.10.1016/0006-8993(88)90274-0Search in Google Scholar

Reymann, K.G., Frey, U., Jork, R., and Matthies, H. (1988b). Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons. Brain Res. 440, 305–314.10.1016/0006-8993(88)91000-1Search in Google Scholar

Reymann, K.G., Frey, U., and Matthies, H. (1988c). A multi-phase model of synaptic long-term potentiation in hippocampal CA1 neurones: protein kinase C activation and protein synthesis are required for the maintenance of the trace. In: Synaptic Plasticity in the Hippocampus. H. Haas and G. Buzsaki, eds. (Berlin: Springer-Verlag), pp. 126–129.10.1007/978-3-642-73202-7_37Search in Google Scholar

Ribot, T. (1882). Diseases of Memory (London: Kegan Paul, Trench & Co.).Search in Google Scholar

Ringold, G.M., Dieckmann, B., Vannice, J.L., Trahey, M., and McCormick, F. (1984). Inhibition of protein synthesis stimulates the transcription of human β-interferon genes in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 81, 3964–3968.10.1073/pnas.81.13.3964Search in Google Scholar PubMed PubMed Central

Ris, L. and Godaux, E. (2007). Synapse specificity of long-term potentiation breaks down with aging. Learn. Mem. 14, 185–189.10.1101/lm.451507Search in Google Scholar PubMed

Ris, L., Villers, A., and Godaux, E. (2009). Synaptic capture-mediated long-lasting long-term potentiation is strongly dependent on mRNA translation. Neuroreport 20, 1572–1576.10.1097/WNR.0b013e328332e021Search in Google Scholar PubMed

Rodriguez-Ortiz, C.J., Garcia-DeLaTorre, P., Benavidez, E., Ballesteros, M.A., and Bermudez-Rattoni, F. (2008). Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiol. Learn. Mem. 89, 352–359.10.1016/j.nlm.2007.10.004Search in Google Scholar PubMed

Rosenbaum, R.S., Moscovitch, M., Foster, J.K., Schnyer, D.M., Gao, F., Kovacevic, N., Verfaellie, M., Black, S.E., and Levine, B. (2008). Patterns of autobiographical memory loss in medial-temporal lobe amnesic patients. J. Cogn. Neurosci. 20, 1490–1506.10.1162/jocn.2008.20105Search in Google Scholar PubMed

Rothman, S. (2010). How is the balance between protein synthesis and degradation achieved? Theor. Biol. Med. Model 7, 25.Search in Google Scholar

Routtenberg, A. (2008). The substrate for long-lasting memory: if not protein synthesis, then what? Neurobiol. Learn. Mem. 89, 225–233.10.1016/j.nlm.2007.10.012Search in Google Scholar PubMed PubMed Central

Routtenberg, A. and Rekart, J.L. (2005). Post-translational protein modification as the substrate for long-lasting memory. Trends Neurosci. 28, 12–19.10.1016/j.tins.2004.11.006Search in Google Scholar PubMed

Rudy, J.W. and Sutherland, R.J. (1995). Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus 5, 375–389.10.1002/hipo.450050502Search in Google Scholar PubMed

Rudy, J.W. and Sutherland, R.J. (2008). Is it systems or cellular consolidation? Time will tell. An alternative interpretation of the Morris group’s recent science paper. Neurobiol. Learn. Mem. 89, 366–369.10.1016/j.nlm.2007.07.017Search in Google Scholar PubMed PubMed Central

Rudy, J.W., Biedenkapp, J.C., Moineau, J., and Bolding, K. (2006). Anisomycin and the reconsolidation hypothesis. Learn. Mem. 13, 1–3.10.1101/lm.157806Search in Google Scholar PubMed

Ryazanov, A.G., Shestakova, E.A., and Natapov, P.G. (1988). Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334, 170–173.10.1038/334170a0Search in Google Scholar PubMed

Sadowski, R.N., Canal, C.E., and Gold, P.E. (2011). Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala. Neurobiol. Learn. Mem. 96, 136–142.10.1016/j.nlm.2011.03.007Search in Google Scholar PubMed PubMed Central

Sajikumar, S. and Frey, J.U. (2004). Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25.10.1016/j.nlm.2004.03.003Search in Google Scholar PubMed

Sajikumar, S., Navakkode, S., and Frey, J.U. (2005). Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr. Opin. Neurobiol. 15, 607–613.10.1016/j.conb.2005.08.009Search in Google Scholar PubMed

Sajikumar, S., Navakkode, S., and Frey, J.U. (2008). Distinct single but not necessarily repeated tetanization is required to induce hippocampal late-LTP in the rat CA1. Learn. Mem. 15, 46–49.10.1101/lm.816908Search in Google Scholar

Salinska, E., Bourne, R.C., and Rose, S.P. (2004). Reminder effects: the molecular cascade following a reminder in young chicks does not recapitulate that following training on a passive avoidance task. Eur. J. Neurosci. 19, 3042–3047.10.1111/j.0953-816X.2004.03407.xSearch in Google Scholar

Salmon, D.P., Lasker, B.R., Butters, N., and Beatty, W.W. (1988). Remote memory in a patient with circumscribed amnesia. Brain Cogn. 7, 201–211.10.1016/0278-2626(88)90030-9Search in Google Scholar

Sarvey, J. (1988). Protein synthesis in long-term potentiation and norepinephrine-induced long-lasting potentiation in hippocampus. In: Long-term Potentiation: From Biophysics to Behavior. P. Landfield and S. Deadwyler, eds. (New York: Alan R. Liss), pp. 329–353.Search in Google Scholar

Schacher, S. and Wu, F. (2002). Synapse formation in the absence of cell bodies requires protein synthesis. J. Neurosci. 22, 1831–1839.10.1523/JNEUROSCI.22-05-01831.2002Search in Google Scholar

Schafe, G.E., Nadel, N.V., Sullivan, G.M., Harris, A., and LeDoux, J.E. (1999). Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn. Mem. 6, 97–110.10.1101/lm.6.2.97Search in Google Scholar

Scharf, M.T., Woo, N.H., Lattal, K.M., Young, J.Z., Nguyen, P.V., and Abel, T. (2002). Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. J. Neurophysiol. 87, 2770–2777.10.1152/jn.2002.87.6.2770Search in Google Scholar

Scheetz, A.J., Nairn, A.C., and Constantine-Paton, M. (1997). N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-aspartate receptors in controlling protein synthesis. Proc. Natl. Acad. Sci. USA 94, 14770–14775.10.1073/pnas.94.26.14770Search in Google Scholar

Scheetz, A.J., Nairn, A.C., and Constantine-Paton, M. (2000). NMDA receptor-mediated control of protein synthesis at developing synapses. Nat. Neurosci. 3, 211–216.10.1038/72915Search in Google Scholar

Schmaltz, G. and Clement-Forestier, D. (1977). Aversive and amnesic effects of cycloheximide in the rat. Physiol. Behav. 18, 381–386.10.1016/0031-9384(77)90247-5Search in Google Scholar

Schulz, D., Huston, J.P., Jezek, K., Haas, H.L., Roth-Härer, A., Selbach, O., and Luhmann, H.J. (2002). Water maze performance, exploratory activity, inhibitory avoidance and hippocampal plasticity in aged superior and inferior learners. Eur. J. Neurosci. 16, 2175–2185.10.1046/j.1460-9568.2002.02282.xSearch in Google Scholar PubMed

Schulz, D., Sergeeva, O.A., Ianovskii, E., Luhmann, H.J., Haas, H.L., and Huston, J.P. (2004). Behavioural parameters in aged rats are related to LTP and gene expression of ChAT and NMDA-NR2 subunits in the striatum. Eur. J. Neurosci. 19, 1373–1383.10.1111/j.1460-9568.2004.03234.xSearch in Google Scholar

Seidenbecher, T., Reymann, K.G., and Balschun, D. (1997). A post-tetanic time window for the reinforcement of long-term potentiation by appetitive and aversive stimuli. Proc. Natl. Acad. Sci. USA 94, 1494–1499.10.1073/pnas.94.4.1494Search in Google Scholar

Selig, D.K., Lee, H.K., Bear, M.F., and Malenka, R.C. (1995). Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. J. Neurophysiol. 74, 1075–1082.10.1152/jn.1995.74.3.1075Search in Google Scholar

Sergueeva, O.A., Fedorov, N.B., and Reymann, K.G. (1993). An antagonist of glutamate metabotropic receptors, (RS)-α-methyl-4-carboxyphenylglycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices. Neuropharmacology 32, 933–935.10.1016/0028-3908(93)90150-2Search in Google Scholar

Serota, R.G. (1971). Acetoxycycloheximide and transient amnesia in the rat. Proc. Natl. Acad. Sci. USA 68, 1249–1250.10.1073/pnas.68.6.1249Search in Google Scholar PubMed PubMed Central

Serrano, P., Yao, Y., and Sacktor, T.C. (2005). Persistent phosphorylation by protein kinase Mζ maintains late-phase long-term potentiation. J. Neurosci. 25, 1979–1984.10.1523/JNEUROSCI.5132-04.2005Search in Google Scholar PubMed PubMed Central

Sharma, A.V., Nargang, F.E., and Dickson, C.T. (2012). Neurosilence: profound suppression of neural activity following intracerebral administration of the protein synthesis inhibitor anisomycin. J. Neurosci. 32, 2377–2387.10.1523/JNEUROSCI.3543-11.2012Search in Google Scholar PubMed PubMed Central

Shors, T.J. and Matzel, L.D. (1997). Long-term potentiation: what’s learning got to do with it? Behav. Brain Sci. 20, 597–614; discussion 614–655.10.1017/S0140525X97001593Search in Google Scholar

Simon, S.M., Peskin, C.S., and Oster, G.F. (1992). What drives the translocation of proteins? Proc. Natl. Acad. Sci. USA 89, 3770–3774.10.1073/pnas.89.9.3770Search in Google Scholar PubMed PubMed Central

Smolen, P., Baxter, D.A., and Byrne, J.H. (2009). Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 79, 031902.10.1103/PhysRevE.79.031902Search in Google Scholar PubMed PubMed Central

Spanis, C.W. and Squire, L.R. (1978). Elevation of brain tyrosine by inhibitors of protein synthesis is not responsible for their amnesic effect. Brain Res. 139, 384–388.10.1016/0006-8993(78)90942-3Search in Google Scholar

Sparks, F.T., Lehmann, H., Hernandez, K., and Sutherland, R.J. (2011). Suppression of neurotoxic lesion-induced seizure activity: evidence for a permanent role for the hippocampus in contextual memory. PLoS One 6, e27426.10.1371/journal.pone.0027426Search in Google Scholar

Sparks, F.T., Spanswick, S.C., Lehmann, H., and Sutherland, R.J. (2013). Neither time nor number of context-shock pairings affect long-term dependence of memory on hippocampus. Neurobiol. Learn. Mem. 106, 309–315.10.1016/j.nlm.2013.05.008Search in Google Scholar

Speese, S.D., Trotta, N., Rodesch, C.K., Aravamudan, B., and Broadie, K. (2003). The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr. Biol. 13, 899–910.10.1016/S0960-9822(03)00338-5Search in Google Scholar

Spencer, H. (1855). The Principles of Psychology (London: Longman, Brown, Green, and Longmans).10.1037/14065-000Search in Google Scholar

Spencer, H. (1862). A System of Synthetic Philosophy: First Principles (Auburn: Molinari Institute).Search in Google Scholar

Squire, L.R. (1986). Mechanisms of memory. Science 232, 1612–1619.10.1126/science.3086978Search in Google Scholar

Squire, L. and Barondes, S. (1972). Inhibitors of cerebral protein or RNA synthesis and memory. In: Macromolecules and Behavior. J. Gaito, ed. (New York: Appleton-Century-Crofts), pp. 61–82.10.1007/978-1-4684-6042-1_5Search in Google Scholar

Squire, L.R. and Barondes, S.H. (1976). Amnesic effect of cycloheximide not due to depletion of a constitutive brain protein with short half-life. Brain Res. 103, 183–189.10.1016/0006-8993(76)90703-4Search in Google Scholar

Squire, L.R. and Davis, H.P. (1981). The pharmacology of memory: a neurobiological perspective. Annu. Rev. Pharmacol. Toxicol. 21, 323–356.10.1146/annurev.pa.21.040181.001543Search in Google Scholar PubMed

Squire, L.R. and Wixted, J.T. (2011). The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34, 259–288.10.1146/annurev-neuro-061010-113720Search in Google Scholar PubMed PubMed Central

Squire, L.R., Kuczenski, R., and Barondes, S.H. (1974). Tyrosine hydroxylase inhibition by cycloheximide and anisomycin is not responsible for their amnesic effect. Brain Res. 82, 241–248.10.1016/0006-8993(74)90601-5Search in Google Scholar

Squire, L.R., Shimamura, A.P., and Amaral, D.G. (1989). Memory and the hippocampus. In: Neural Models of Plasticity. J.H. Byrne and W.O. Berry, eds. (San Diego: Academic Press), pp. 208–239.10.1016/B978-0-12-148955-7.50016-3Search in Google Scholar

Squire, L.R., Zola-Morgan, S., Cave, C.B., Haist, F., Musen, G., and Suzuki, W.A. (1990). Memory: organization of brain systems and cognition. Cold Spring Harb. Symp. Quant. Biol. 55, 1007–1023.10.1101/SQB.1990.055.01.096Search in Google Scholar

Stanton, P.K. and Sarvey, J.M. (1984). Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J. Neurosci. 4, 3080–3088.10.1523/JNEUROSCI.04-12-03080.1984Search in Google Scholar

Stanton, P.K. and Sarvey, J.M. (1985). Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain Res. 361, 276–283.10.1016/0006-8993(85)91299-5Search in Google Scholar

Star, E.N., Kwiatkowski, D.J., and Murthy, V.N. (2002). Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246.10.1038/nn811Search in Google Scholar

Staubli, U. (1990). Behavioral reflections of the NMDA system. Psychobiology 18, 267–268.10.3758/BF03327241Search in Google Scholar

Staubli, U. and Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by ‘θ’ pattern stimulation. Brain Res. 435, 227–234.10.1016/0006-8993(87)91605-2Search in Google Scholar

Stäubli, U., Faraday, R., and Lynch, G. (1985). Pharmacological dissociation of memory: anisomycin, a protein synthesis inhibitor, and leupeptin, a protease inhibitor, block different learning tasks. Behav. Neural Biol. 43, 287–297.10.1016/S0163-1047(85)91632-2Search in Google Scholar

Stäubli, U., Chun, D., and Lynch, G. (1998). Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 18, 3460–3469.10.1523/JNEUROSCI.18-09-03460.1998Search in Google Scholar

Steward, O. and Schuman, E.M. (2001). Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325.10.1146/annurev.neuro.24.1.299Search in Google Scholar

Straube, T., Korz, V., Balschun, D., and Frey, J.U. (2003). Requirement of β-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J. Physiol. 552, 953–960.10.1113/jphysiol.2003.049452Search in Google Scholar

Sutherland, R.J., Weisend, M.P., Mumby, D., Astur, R.S., Hanlon, F.M., Koerner, A., Thomas, M.J., Wu, Y., Moses, S.N., Cole, C., et al. (2001). Retrograde amnesia after hippocampal damage: recent vs. remote memories in two tasks. Hippocampus 11, 27–42.10.1002/1098-1063(2001)11:1<27::AID-HIPO1017>3.0.CO;2-4Search in Google Scholar

Sutherland, R.J., Lehmann, H., Spanswick, S.C., Sparks, F.T., and Melvin, N.R. (2006). Growth points in research on memory and hippocampus. Can. J. Exp. Psychol. Rev. Can. Psychol. Exp. 60, 166–174.10.1037/cjep20060016Search in Google Scholar

Sutherland, R.J., O’Brien, J., and Lehmann, H. (2008). Absence of systems consolidation of fear memories after dorsal, ventral, or complete hippocampal damage. Hippocampus 18, 710–718.10.1002/hipo.20431Search in Google Scholar

Sutherland, R.J., Sparks, F.T., and Lehmann, H. (2010). Hippocampus and retrograde amnesia in the rat model: A modest proposal for the situation of systems consolidation. Neuropsychologia 48, 2357–2369.10.1016/j.neuropsychologia.2010.04.015Search in Google Scholar

Sutton, M.A., Ito, H.T., Cressy, P., Kempf, C., Woo, J.C., and Schuman, E.M. (2006). Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799.10.1016/j.cell.2006.03.040Search in Google Scholar

Sutton, M.A., Taylor, A.M., Ito, H.T., Pham, A., and Schuman, E.M. (2007). Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55, 648–661.10.1016/j.neuron.2007.07.030Search in Google Scholar

Tai, H.-C. and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826–838.10.1038/nrn2499Search in Google Scholar

Tang, S.J., Reis, G., Kang, H., Gingras, A.-C., Sonenberg, N., and Schuman, E.M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 467–472.10.1073/pnas.012605299Search in Google Scholar

Tanzi, E. (1893). I fatti e la induzioni nell ‘odierna istologia del sistema nervoso. Riv. Sper. Freniatr. Med. Leg. Alienazioni Met. Soc. Ital. Psichiatria 19, 419–472.Search in Google Scholar

Teyler, T.J. and DiScenna, P. (1986). The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154.10.1037/0735-7044.100.2.147Search in Google Scholar

Thomas, M.J. and O’Dell, T.J. (1995). The molecular switch hypothesis fails to explain the inconsistent effects of the metabotropic glutamate receptor antagonist MCPG on long-term potentiation. Brain Res. 695, 45–52.10.1016/0006-8993(95)00757-HSearch in Google Scholar

Thompson, R.F. (1986). The neurobiology of learning and memory. Science 233, 941–947.10.1126/science.3738519Search in Google Scholar

Tischmeyer, W., Schicknick, H., Kraus, M., Seidenbecher, C.I., Staak, S., Scheich, H., and Gundelfinger, E.D. (2003). Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. Eur. J. Neurosci. 18, 942–950.10.1046/j.1460-9568.2003.02820.xSearch in Google Scholar

Tokuda, H., Hatakeyama, D., Shibata, T., Akamatsu, S., Oiso, Y., and Kozawa, O. (2003). p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am. J. Physiol. Endocrinol. Metab. 284, E1202–E1209.10.1152/ajpendo.00300.2002Search in Google Scholar

Trachsel, H., Erni, B., Schreier, M.H., and Staehelin, T. (1977). Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767.10.1016/0022-2836(77)90269-8Search in Google Scholar

Tsien, J.Z. (2000). Linking Hebb’s coincidence-detection to memory formation. Curr. Opin. Neurobiol. 10, 266–273.10.1016/S0959-4388(00)00070-2Search in Google Scholar

Tsokas, P., Grace, E.A., Chan, P., Ma, T., Sealfon, S.C., Iyengar, R., Landau, E.M., and Blitzer, R.D. (2005). Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J. Neurosci. 25, 5833–5843.10.1523/JNEUROSCI.0599-05.2005Search in Google Scholar

Tsvetkov, P., Myers, N., Eliav, R., Adamovich, Y., Hagai, T., Adler, J., Navon, A., and Shaul, Y. (2014). NADH binds and stabilizes the 26S proteasomes independent of ATP. J. Biol. Chem. 289, 11272–11281.10.1074/jbc.M113.537175Search in Google Scholar

Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47.10.1016/0092-8674(94)90398-0Search in Google Scholar

Turrigiano, G.G. and Nelson, S.B. (2004). Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107.10.1038/nrn1327Search in Google Scholar

Ungar, G., Aschheim, I., Psychoyos, S., and Romano, D.V. (1957). Reversible changes of protein configuration in stimulated nerve structures. J. Gen. Physiol. 40, 635–652.10.1085/jgp.40.4.635Search in Google Scholar

Van Oudenaarden, A. and Theriot, J.A. (1999). Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat. Cell Biol. 1, 493–499.10.1038/70281Search in Google Scholar

Vanderklish, P., Saido, T.C., Gall, C., Arai, A., and Lynch, G. (1995). Proteolysis of spectrin by calpain accompanies θ-burst stimulation in cultured hippocampal slices. Brain Res. Mol. Brain Res. 32, 25–35.10.1016/0169-328X(95)00057-YSearch in Google Scholar

Vanderklish, P.W., Krushel, L.A., Holst, B.H., Gally, J.A., Crossin, K.L., and Edelman, G. M. (2000). Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 97, 2253–2258.10.1073/pnas.040565597Search in Google Scholar PubMed PubMed Central

Verity, M.A., Brown, W.J., and Cheung, M.K. (1979). On the mechanism of ouabain inhibition of synaptosome protein synthesis. J. Neurochem. 32, 1295–1301.10.1111/j.1471-4159.1979.tb11057.xSearch in Google Scholar PubMed

Vickers, C.A. and Wyllie, D.J.A. (2007). Late-phase, protein synthesis-dependent long-term potentiation in hippocampal CA1 pyramidal neurones with destabilized microtubule networks. Br. J. Pharmacol. 151, 1071–1077.10.1038/sj.bjp.0707314Search in Google Scholar PubMed PubMed Central

Vickers, C.A., Dickson, K.S., and Wyllie, D.J.A. (2005). Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568, 803–813.10.1113/jphysiol.2005.092924Search in Google Scholar PubMed PubMed Central

Villers, A., Godaux, E., and Ris, L. (2010). Late phase of L-LTP elicited in isolated CA1 dendrites cannot be transferred by synaptic capture. Neuroreport 21, 210–215.10.1097/WNR.0b013e328335c311Search in Google Scholar PubMed

Villers, A., Godaux, E., and Ris, L. (2012). Long-lasting LTP requires neither repeated trains for its induction nor protein synthesis for its development. PLoS One 7, e40823.10.1371/journal.pone.0040823Search in Google Scholar PubMed PubMed Central

Volianskis, A. and Jensen, M.S. (2003). Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J. Physiol. 550, 459–492.10.1113/jphysiol.2003.044214Search in Google Scholar

Von Manteuffel, S.R., Gingras, A.C., Ming, X.F., Sonenberg, N., and Thomas, G. (1996). 4E-BP1 phosphorylation is mediated by the FRAP-p70S6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076–4080.10.1073/pnas.93.9.4076Search in Google Scholar

Wallace, C.S., Lyford, G.L., Worley, P.F., and Steward, O. (1998). Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J. Neurosci. 18, 26–35.10.1523/JNEUROSCI.18-01-00026.1998Search in Google Scholar

Wang, S.-H., Redondo, R.L., and Morris, R.G.M. (2010). Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc. Natl. Acad. Sci. USA 107, 19537–19542.10.1073/pnas.1008638107Search in Google Scholar

Wang, Y., Zhu, G., Briz, V., Hsu, Y.-T., Bi, X., and Baudry, M. (2014). A molecular brake controls the magnitude of long-term potentiation. Nat. Commun. 5, 3051.10.1038/ncomms4051Search in Google Scholar

Waterlow, J.C., Garlick, P.J., and Millward, D. (1978). Protein turnover in mammalian tissues and in the whole body (Amsterdam: Elsevier/North-Holland Biomedical Press).Search in Google Scholar

Weiskrantz, L. (1966). Experimental studies of amnesia. In: Amnesia. G. Whitty and O. Zangwill, eds. (London: Butterworths), pp. 1–35.Search in Google Scholar

White, J.A., Rubinstein, J.T., and Kay, A.R. (2000). Channel noise in neurons. Trends Neurosci. 23, 131–137.10.1016/S0166-2236(99)01521-0Search in Google Scholar

Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097.10.1126/science.1128134Search in Google Scholar

Willeumier, K., Pulst, S.M., and Schweizer, F.E. (2006). Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons. J. Neurosci. 26, 11333–11341.10.1523/JNEUROSCI.1684-06.2006Search in Google Scholar

Williams, J., Dragunow, M., Lawlor, P., Mason, S., Abraham, W.C., Leah, J., Bravo, R., Demmer, J., and Tate, W. (1995). Krox20 may play a key role in the stabilization of long-term potentiation. Brain Res. Mol. Brain Res. 28, 87–93.10.1016/0169-328X(94)00187-JSearch in Google Scholar

Wilsch, V.W., Behnisch, T., Jäger, T., Reymann, K.G., and Balschun, D. (1998). When are class I metabotropic glutamate receptors necessary for long-term potentiation? J. Neurosci. 18, 6071–6080.10.1523/JNEUROSCI.18-16-06071.1998Search in Google Scholar

Wilson, D.A., Willner, J., Kurz, E.M., and Nadel, L. (1986). Early handling increases hippocampal long-term potentiation in young rats. Behav. Brain Res. 21, 223–227.10.1016/0166-4328(86)90240-8Search in Google Scholar

Winder, D.G., Mansuy, I.M., Osman, M., Moallem, T.M., and Kandel, E.R. (1998). Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92, 25–37.10.1016/S0092-8674(00)80896-XSearch in Google Scholar

Winocur, G., Moscovitch, M., and Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48, 2339–2356.10.1016/j.neuropsychologia.2010.04.016Search in Google Scholar

Wittenberg, G.M. and Tsien, J.Z. (2002). An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 25, 501–505.10.1016/S0166-2236(02)02231-2Search in Google Scholar

Wittstock, S. and Menzel, R. (1994). Color learning and memory in honey bees are not affected by protein synthesis inhibition. Behav. Neural Biol. 62, 224–229.10.1016/S0163-1047(05)80020-2Search in Google Scholar

Wittstock, S., Kaatz, H.H., and Menzel, R. (1993). Inhibition of brain protein synthesis by cycloheximide does not affect formation of long-term memory in honeybees after olfactory conditioning. J. Neurosci. 13, 1379–1386.10.1523/JNEUROSCI.13-04-01379.1993Search in Google Scholar

Woo, N.H. and Nguyen, P.V. (2002). ‘Silent’ metaplasticity of the late phase of long-term potentiation requires protein phosphatases. Learn. Mem. 9, 202–213.10.1101/lm.498402Search in Google Scholar PubMed PubMed Central

Woo, N.H. and Nguyen, P.V. (2003). Protein synthesis is required for synaptic immunity to depotentiation. J. Neurosci. 23, 1125–1132.10.1523/JNEUROSCI.23-04-01125.2003Search in Google Scholar

Woo, N.H., Duffy, S.N., Abel, T., and Nguyen, P.V. (2000). Genetic and pharmacological demonstration of differential recruitment of cAMP-dependent protein kinases by synaptic activity. J. Neurophysiol. 84, 2739–2745.10.1152/jn.2000.84.6.2739Search in Google Scholar PubMed

Woo, N.H., Duffy, S.N., Abel, T., and Nguyen, P.V. (2003). Temporal spacing of synaptic stimulation critically modulates the dependence of LTP on cyclic AMP-dependent protein kinase. Hippocampus 13, 293–300.10.1002/hipo.10086Search in Google Scholar PubMed

Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Oliveira, A.M.M., Lombardi, T.L., and Abel, T. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111–119.10.1101/lm.86605Search in Google Scholar PubMed PubMed Central

Wu, Z.L., Thomas, S.A., Villacres, E.C., Xia, Z., Simmons, M.L., Chavkin, C., Palmiter, R.D., and Storm, D.R. (1995). Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA. 92, 220–224.10.1073/pnas.92.1.220Search in Google Scholar PubMed PubMed Central

Xiong, W., Kojic, L.Z., Zhang, L., Prasad, S.S., Douglas, R., Wang, Y., and Cynader, M.S. (2006). Anisomycin activates p38 MAP kinase to induce LTD in mouse primary visual cortex. Brain Res. 1085, 68–76.10.1016/j.brainres.2006.02.015Search in Google Scholar PubMed

Yang, H.-W., Zhou, L.-J., Hu, N.-W., Xin, W.-J., and Liu, X.-G. (2005). Activation of spinal D1/D5 receptors induces late-phase LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. J. Neurophysiol. 94, 961–967.10.1152/jn.01324.2004Search in Google Scholar PubMed

Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, N., Yuasa, S., et al. (2007). SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130, 943–957.10.1016/j.cell.2007.06.052Search in Google Scholar PubMed PubMed Central

Yao, Y., Kelly, M.T., Sajikumar, S., Serrano, P., Tian, D., Bergold, P.J., Frey, J.U., and Sacktor, T.C. (2008). PKMζ maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J. Neurosci. 28, 7820–7827.10.1523/JNEUROSCI.0223-08.2008Search in Google Scholar PubMed PubMed Central

Yarmolinsky, M.B. and Haba, G.L. (1959). Inhibition by puromycin of amino acid incorporation into protein. Proc. Natl. Acad. Sci. USA 45, 1721–1729.10.1073/pnas.45.12.1721Search in Google Scholar PubMed PubMed Central

Yi, J.J. and Ehlers, M.D. (2007). Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol. Rev. 59, 14–39.10.1124/pr.59.1.4Search in Google Scholar PubMed

Yin, X., Takei, Y., Kido, M.A., and Hirokawa, N. (2011). Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron 70, 310–325.10.1016/j.neuron.2011.02.049Search in Google Scholar PubMed

Young, J.Z. and Nguyen, P.V. (2005). Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J. Neurosci. 25, 7221–7231.10.1523/JNEUROSCI.0909-05.2005Search in Google Scholar PubMed PubMed Central

Young, J.Z., Isiegas, C., Abel, T., and Nguyen, P.V. (2006). Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur. J. Neurosci. 23, 1784–1794.10.1111/j.1460-9568.2006.04707.xSearch in Google Scholar

Zandi, I. (2000). Science and engineering in the age of systems. A lecture presented at the International Council on System Engineering, September 2000, Philadelphia.Search in Google Scholar

Zeng, H., Chattarji, S., Barbarosie, M., Rondi-Reig, L., Philpot, B.D., Miyakawa, T., Bear, M.F., and Tonegawa, S. (2001). Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617–629.10.1016/S0092-8674(01)00585-2Search in Google Scholar

Zhang, L., Meng, K., Li, Y.-H., and Han, T.-Z. (2009). NR2A-containing NMDA receptors are required for L-LTP induction and depotentiation in CA1 region of hippocampal slices. Eur. J. Neurosci. 29, 2137–2144.10.1111/j.1460-9568.2009.06783.xSearch in Google Scholar PubMed

Zhuo, M., Holtzman, D.M., Li, Y., Osaka, H., DeMaro, J., Jacquin, M., and Bu, G. (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20, 542–549.10.1523/JNEUROSCI.20-02-00542.2000Search in Google Scholar

Received: 2014-10-16
Accepted: 2015-3-12
Published Online: 2015-5-20
Published in Print: 2015-10-1

©2015 by De Gruyter

Downloaded on 1.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2014-0072/html
Scroll to top button