Abstract
The article presents the results of generalization of known information on various methods of enrichment of low-grade phosphate raw materials in the world. Based on the review of literature materials, scientists propose several methods of enrichment: mechanical, calcination at high temperatures, flotation, chemical enrichment with various acids and salts. Analyzing and summarizing these data, the article describes the advantages and disadvantages of each proposed method of enrichment of low-grade phosphorites. It is known that the sphere of production of phosphorus-containing products is important for many agricultural countries that produce these products themselves or import from others. This review material is very important for those who are interested in the problems of attracting low-grade phosphates into the production cycle by enriching them.
Funding source: Ministry of Education and Science of the Republic of Kazakhstan
Award Identifier / Grant number: PhD grant
-
Author contributions: Project administration, Resources and Supervision – U.Besterekov; Writing – review & editing – Y.Raiymbekov and P.Abdurazova; Visualization and Software – U.Nazarbek.
-
Research funding: This research was funded by the Ministry of Education and Science of the Republic of Kazakhstan in the form of a grant for studying in the PhD program.
-
Conflict of interest statement: The authors declare no conflict of interest.
References
Abbes, N.; Bilal, E.; Hermann, L.; Steiner, G.; Haneklaus, N. Thermal beneficiation of Sra Ouertane (Tunisia) low-grade phosphate rock. Minerals 2020, 10, 937; https://doi.org/10.3390/min10110937.Search in Google Scholar
Abdel-Khalek, N. A. Evaluation of flotation strategies for sedimentary phosphates with siliceous and carbonates gangue. Miner. Eng. 2000, 13(7), 789–793; https://doi.org/10.1016/s0892-6875(00)00064-9.Search in Google Scholar
Abouzeid, A.-Z. M. Physical and thermal treatment of phosphate ores: an overview. Int. J. Miner. Process. 2008, 85(4), 59–84; https://doi.org/10.1016/j.minpro.2007.09.001.Search in Google Scholar
Abu-Eishah, S. I.; El-Jallad, I. S.; Muthaker, M.; Touqan, M.; Sadeddin, W. Beneficiation of calcareous phosphate rocks using dilute acetic acid solutions: optimisation of operating conditions for Ruseifa (Jordan) phosphate. Int. J. Miner. Process. 1991, 31(1), 115–126; https://doi.org/10.1016/0301-7516(91)90008-7.Search in Google Scholar
Albuquerque, R. O.; Peres, A. E. S.; Aquino, J. A.; Pereira, C. A. Flotation routes for a phosphate ore bearing silicate-carbonate gangue. Rev. Fac. Ingen. 2012, 27, 26–32.Search in Google Scholar
Al-Fariss, R. F. Beneficiation of carbonate rich saudi phosphate rocks. In Beneficiation of Phosphate: Theory and Practice; El-Shall, H.; Moudgil, B. M.; Wiegel, R., Eds. SME: Arizona, 1993; pp 251–259.Search in Google Scholar
Alperovich, I. G. Fosfatnoe syr’e i ego termicheskaja podgotovka dlja jelektrovozgonki zheltogo fosfora: monografija [Phosphate raw materials and its thermal preparation for electric distillation of yellow phosphorus: monograph]; LenNIIGiprohim: Leningrad, 1982. (in Russian).Search in Google Scholar
Arroug, L.; Elaatmani, M.; Zegzouti, A.; Aitbabram, M. Low-grade phosphate tailings beneficiation via organic acid leaching: process optimization and kinetic studies. Minerals 2021, 11, 492; https://doi.org/10.3390/min11050492.Search in Google Scholar
Ashraf, M.; Zafar, Z. I.; Ansari, T. M. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy 2005, 80(4), 286–292; https://doi.org/10.1016/j.hydromet.2005.09.001.Search in Google Scholar
Assis, S. M.; Montenegro, L. C. M.; Peres, A. A. C. Utilization of hydroxamates in minerals froth flotation. Miner. Eng. 1996, 9(1), 103–114; https://doi.org/10.1016/0892-6875(95)00134-4.Search in Google Scholar
Baichenko, A. A.; Klein, M. S. Method of Enrichment of Carbonate-Siliceous Phosphorite Ores. State Patent Office of the USSR Patent no. SU956022, 1982. https://yandex.ru/patents/doc/SU956022A1_19820907 (accessed Sep 07, 2021).Search in Google Scholar
Bakry, A. R.; Abdelfattah, N. A.; Farag, A. B.; Elwy, A. M. Upgrading of Abu-Tartur calcareous phosphate via selective leaching by organic acids. Int. J. Eng. Res. 2015, 6(10), 57–64.Search in Google Scholar
Bandyopadhyay, B. Personal Communication with Dr. Bhaskar Bandyopadhyay; Consultant: India, 2006.Search in Google Scholar
Baudet, G. The processing of phosphate ores. Chron. Rch. Miner., Special Issue on Phosphates 1988, 12, 67.Search in Google Scholar
Borisov, V. M.; Fridman, N. G.; Smirnov, A. I.; фтв Zalavina, T. P. Method of Enrichment of Phosphorous Ore. State Patent Office of the USSR, Inventor’s certificate no. 390831, 1974.Search in Google Scholar
Boulos, T. R.; Abdel-Khalek, N. A.; Ibrahim, S. S. Rationalization of the flotation circuit of an Egyptian phosphorite plant. Tenside Surfactants Deterg. 2000, 3, 176–182.Search in Google Scholar
Buttner, B. M.; Grote, J.; Vogt, V.; Bahr, A. Flotation and flocculation of ultrafine-grained apatite ores, XVII. Int. Min. Process. Congress, 1991. Bergakademie, Freiberg 1991, 1, 71–82.Search in Google Scholar
Cardini, J. L.; Leve, M.; Prddali, J. J. Concentration de minerals de phosphate gangue dolomitique. Ind. Miner., Les Techniques 1984, 84(1), 14–24.Search in Google Scholar
Carmela, B. A.; Warren, J. F. Enrichment of Natural Phosphate Containing Calcite. UK Patent Office Patent no. 908018, 1963.Search in Google Scholar
Carmela, B. A.; Warren, J. F. Enrichment of Natural Phosphate Containing Calcite. UK Patent Office Patent no. 908137, 1963.Search in Google Scholar
Chaikina, M. V. Method of Enrichment of Carbonate-Containing Phosphorites. State Patent Office of the USSR Patent no. SU 559915A1, 1977. https://yandex.ru/patents/doc/SU559915A1_19770530 (accessed Sep 27, 2021).Search in Google Scholar
Chang, J.-S.; Kelly, A.; Crowley, J. M. Handbook of Electrostatic Processes; CRC Press: Florida, 1995.Search in Google Scholar
Clerici, C.; Morandini, A. F.; Mancini, A.; Mancini, R. Flotation of phosphate rock with carbonate-quartz gangue. In Reagents in the Minerals Industry; Jones, M. J.; Oblatt, R., Eds. Institution of Mining and Metallurgy: London, 1984; pp 221–225.Search in Google Scholar
Clifford, P.; Lloyd, G. M.; Zhang, P. Technology research improves phosphate economics. Min. Eng. 1998, 50(2), 46–51.Search in Google Scholar
Coffey, R. D.; Mooney, K. W.; Cromwell, G. I.; Aaron, D. K.-J. Biological availability of phosphorus in defluorinated phosphates with different phosphorus solubilities in neutral ammonium citrate for chicks and pigs. Anim. Sci. 1994, 72, 2653–2660; https://doi.org/10.2527/1994.72102653x.Search in Google Scholar PubMed
Costa, A. C. A.; Medronho, R. A.; Pecanha, R. P. Phosphate rock bioleaching. Biotechnol. Lett. 1992, 14, 233–238; https://doi.org/10.1007/bf01023365.Search in Google Scholar
Dahanayake, K.; Senaratne, A.; Subasinghe, S.; Liyanarachchi, A. Potential use of naturally occurring sulphuric acid to beneficiate poorly soluble phosphate from Eppawala, Sri Lanka. Fert. Res. 1991, 29, 197–201; https://doi.org/10.1007/bf01048960.Search in Google Scholar
Dar, S. A.; Khan, K. F. Sedimentary: phosphates. In Reference Module in Earth Systems and Environmental Sciences; Birch, W. D., Ed. Museum Victoria: Melbourne, 2017; pp 1–17.10.1016/B978-0-12-409548-9.10509-3Search in Google Scholar
Demir, F.; Donmez, B.; Colak, S. Leaching kinetics of magnesite in citric acid solutions. J. Chem. Eng. Jpn. 2003, 36, 683–688; https://doi.org/10.1252/jcej.36.683.Search in Google Scholar
Disanto, B. J. SME Mineral Processing Handbook; SME: Arizona, 1985.Search in Google Scholar
Economou, E. D.; Vaimakis, T. C. Beneficiation of Greek calcareous phosphate ore using acetic acid solutions. Ind. Eng. Chem. Res. 1997, 36(5), 1491–1497. https://doi.org/10.1021/ie960432b.Search in Google Scholar
Economou, E. D.; Vaimakis, T. C.; Papamichael, E. M. Kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions. J. Colloid Interface Sci. 1998, 245(1), 164–171; https://doi.org/10.1006/jcis.1998.5395.Search in Google Scholar
Economou, E. D.; Vaimakis, T. C.; Papamichael, E. M. The kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions: the case of pH range from 3.96 to 6.40. J. Colloid Interface Sci. 2002, 245(1), 133–141; https://doi.org/10.1006/jcis.2001.7931.Search in Google Scholar PubMed
Elgilliani, D. A.; Abouzeid, A.-Z. M. Flotation of carbonates from phosphate ores in acidic media. Int. J. Miner. Process. 1993, 38(3–4), 235–256; https://doi.org/10.1016/0301-7516(93)90077-N.Search in Google Scholar
El-Jalead, I. S.; Abouzeid, A. Z. M.; El-Sinbawy, H. A. Calcination of phosphates: reactivity of calcined phosphate. Powder Technol. 1980, 26, 187–197; https://doi.org/10.1016/0032-5910(80)85061-3.Search in Google Scholar
Emich, G. D. Phosphate rock. Ind. Miner. Rocks 1984, 2, 1017–1047.Search in Google Scholar
Fei, X.; Jie, Z.; Jiyan, C.; Jianrui, W.; Lin, W. Research on enrichment of P2O5 from low-grade carbonaceous phosphate ore via organic acid solution. J. Anal. Methods Chem. 2019, 2019, 7; https://doi.org/10.1155/2019/9859580.Search in Google Scholar PubMed PubMed Central
Flaszenberg, A.; Prulov, I.; Lapidot, M. Process for the Upgrading of Rock Phosphate. United States Patent Office Patent no. US3067023, 1962. https://patents.google.com/patent/US3067023?oq=US3067023 (accessed Sep 13, 2021).Search in Google Scholar
Fredd, C. N.; Fogler, H. S. The kinetics of calcite dissolution in acetic acid solutions. J. Chem. Eng. Sci. 1998, 53, 3863–3874; https://doi.org/10.1016/s0009-2509(98)00192-4.Search in Google Scholar
Fuerstenau, M. C.; Han, K. N. Principles of Mineral Processing; SME: Arizona, 2003.Search in Google Scholar
Gharabaghi, M.; Irannajad, M.; Noaparast, M. A review of the beneficiation of calcareous phosphate ores using organic acid leaching. Hydrometallurgy 2010, 103(1), 96–107; https://doi.org/10.1016/j.hydromet.2010.03.002.Search in Google Scholar
Good, P. C. Beneficiation of Unweathered Indian Calcareous Phosphate Rock by Calcination and Hydration. US Bureau of Mines Report no. 8154, 1976.Search in Google Scholar
Good, P. C.; Goff, T. N.; White, J. C. Acidulation of Florida phosphate matrix in a single-tank reactor. BuMines Rl 1979, 8339, 16.Search in Google Scholar
Grigoryan, G. O. Method of Phosphorite Enrichment. State Patent Office of the USSR Patent no. SU 469664A1, 1975. https://yandex.ru/patents/doc/SU469664A1_19750505 (accessed Sep 27, 2021).Search in Google Scholar
Gunduz, T.; Gumgum, B. Enrichment of low-quality phosphates of the Mazidagi deposit by calcination and extraction methods. Separ. Sci. Technol. 1987, 6(22), 1645–1648; https://doi.org/10.1080/01496398708058424.Search in Google Scholar
Hartman, H. L.; Mutmansky, J. M. Introductory Mining Engineering; John Wiley & Sons: New Jersey, 2002.Search in Google Scholar
Haweel, C. K.; Abdul-Majeed, B. A.; Eisa, M. Y. Beneficiation of Iraqi Akash at phosphate ore using organic acids for the production of wet process phosphoric acid. Al-Khwarizmi Eng. J. 2013, 9(4), 24–38.Search in Google Scholar
Henin, J. P.; Lectard, A. Suspension flash calcining. Eng. Min. J. 1983, 10, 77–84.Search in Google Scholar
Henin, J. P.; Pinoncely, A. FCB et la calcination flash. Ind. Miner, Mines et Carrières technologies 1986, 6, 249–252.Search in Google Scholar
Houot, R.; Joussemet, R.; Tracez, J.; Brouard, R. Selective flotation of phosphatic ores having a siliceous and/or a carbonated gangue. Int. J. Miner. Process. 1985, 14, 245–264; https://doi.org/10.1016/0301-7516(85)90049-3.Search in Google Scholar
Igual, J. M.; Valverde, A.; Cervantes, E.; Velazquez, E. Phosphate solubilizing bacteria as inoculants for agriculture: use of update molecular techniques in their study. Agronomie 2001, 21, 561–568; https://doi.org/10.1051/agro:2001145.10.1051/agro:2001145Search in Google Scholar
Issahary, D. Prediction of the phosphorus pentoxide content in the product as a function of raw material composition in phosphate beneficiation by calcination. Anal. Chim. Acta 1982, 138, 183–190; https://doi.org/10.1016/s0003-2670(01)85301-0.Search in Google Scholar
Jerzy, W. Method of processing low-percentage polish phosphorites into phosphoric acid and concentrated phosphoric fertilizers. Przem. Chem. 1967, 7(46), 369–373.Search in Google Scholar
Jordan, G.; Higgins, S. R.; Eggleston, C. M.; Knauss, K. G.; Schmahl, W. W. Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: step orientation and kink dynamics. Geochem. Cosmochim. Acta 2001, 23, 4257–4266; https://doi.org/10.1016/s0016-7037(01)00729-3.Search in Google Scholar
Khaddor, M.; Ziyad, M.; Joffre, J.; Amblès, A. Pyrolysis and characterization of the kerogen from the Moroccan Youssoufia rock phosphate. Chem. Geol. 2002, 186(1–2), 17–30; https://doi.org/10.1016/s0009-2541(02)00002-5.Search in Google Scholar
Kiperman, Y. A. Fosfaty v XXI veke: Monografija [Phosphates for the XXI century: Monograph]; Kazphosphate LLC: Almaty – Taraz – Zhanatas, 2006. http://www.kpp.kz/upload/kf_video_files/fosfati_XXI.pdf (in Russian).Search in Google Scholar
Kokal, H. The origin of phosphorus in ironmaking raw materials and methods of removal. A review. In 63rd Annual Meeting Minnesota Section AIME; The American Institute of Mining, Metallurgical, and Petroleum Engineers: Englewood, 1990; pp. 225–257.Search in Google Scholar
Komarova, Z. A. The material composition and enrichment of a sample of micrograin phosphorite ore from the Koksu deposit (Kazakhstan). Min. Inf. Anal. Bull. (Sci. Tech. J.) 2012, 9, 379–388.Search in Google Scholar
Kozhevnikov, A. O.; Struzhkov, V. N.; Shokhin, V. N.; Bekhtle, G. A.; Grishin, S. I.; Kalinin, A. V.; Shuvalova, N. K.; Treushenko, N. I.; Sandt, F. F.; Baskakova, M. I. Method of Flotation and Chemical Enrichment of Natural Phosphorites. State Patent Office of the USSR Patent no. SU178836, 1992. https://yandex.ru/patents/doc/SU1780836A1_19921215 (accessed Sep 07, 2021).Search in Google Scholar
Kozhevnikov, A. O.; Struzhkov, V. N.; Titkov, S. N.; Bekhtle, G. A.; Grishin, S. I.; Kalinin, A. V.; Shuvalova, N. K.; Treushenko; Kuznetsova, A. O. Method of Chemical-Flotation Enrichment of Natural Phosphorites. State Patent Office of the USSR Patent no. SU1773491, 1992. https://yandex.ru/patents/doc/SU1773491A1_19921107 (accessed Sep 07, 2021).Search in Google Scholar
Kumar, D. Calcination of phosphate ores. Chem. Eng. Technol. 1980, 9(52), 739–740.10.1002/cite.330520912Search in Google Scholar
Kunii, D.; Levenspiel, O. Fluidization Engineering; John Wiley & Sons: New Jersey, 1969.Search in Google Scholar
Lawver, J. E.; Raulerson, J. D.; Cook, C. C. New techniques in beneficiation phosphate rock. Trans. SME-AIME 1980, 268, 1787–1801.Search in Google Scholar
Li, C. X.; Cheng, R. J.; Luo, H. H. Study on collector for reverse flotation of certain phosphorite in Guizhou. Adv. Mater. Res. 2013, 734–737, 1086–1092; https://doi.org/10.4028/www.scientific.net/amr.734-737.1086.Search in Google Scholar
Lyu, V. Method of Concentrating Phosphorus-Containing Ore. State Patent Office of the USSR Patent no. SU 1516006A3, 1989. https://yandex.ru/patents/doc/SU1516006A3_19891015 (accessed Sep 27, 2021).Search in Google Scholar
Matiolo, E.; Couto, H. J. B.; de Lira Teixeira, M. F.; de Almeida, R. N.; de Freitas, A. S. A comparative study of different columns sizes for ultrafine apatite flotation. Minerals 2019, 9, 391; https://doi.org/10.3390/min9070391.Search in Google Scholar
Mbissik, A.; Elghali, A.; Ouabid, M.; Raji, O.; Bodinier, J.-L.; El Messbahi, H. Alkali-hydrothermal treatment of K-rich igneous rocks for their direct use as potassic fertilizers. Minerals 2021, 11, 140; https://doi.org/10.3390/min11020140.Search in Google Scholar
Miller, J. D.; Wang, X.; Li, M. A new collector chemistry for phosphate flotation. In SME Annual Meeting, 1991, Denver, Colorado, February 26–28, 2001.Search in Google Scholar
Oral, L.; Bunyamin, D.; Fatih, D. Dissolution kinetics of natural magnesite in acetic acid solutions. Int. J. Miner. Process. 2005, 75, 91–99.10.1016/j.minpro.2004.05.002Search in Google Scholar
Petukhov, O. F.; Shtoller, V. V. Method of Concentrating Magnesium-Containing Phosphorites. State Patent Office of the USSR Patent no. SU 937329A1, 1982. https://yandex.ru/patents/doc/SU937329A1_19820623 (accessed Sep 27, 2021).Search in Google Scholar
Pharmaceutical Group in Lab 2 Rooms of Chemical Mining Design and Research Institute of Ministry of Chemical Industry. The application of SDS in flotation experiments of Yichang phosphate rock. Ind. Miner. Process. 1975, 1, 36–38. (In Chinese).Search in Google Scholar
Pinto, C. A. F.; Yarar, B.; Araujo, A. C. Apatite flotation kinetics with conventional and new collectors. In SME Annual Meeting, 1991, Denver, Colorado, February 25–28, 1991.Search in Google Scholar
Potashnik, B. A.; Avakjan, Z. A.; Karavajko, G. I.; Georgievskij, A. F.; Mager, V. O. Method of Dressing Carbonate-Containing Phosphate Raw Material. Russian Agency for Patents and Trademarks Patent no. RU2097139C1, 1997. https://yandex.ru/patents/doc/RU2097139C1_19971127 (accessed Sep 19, 2021).Search in Google Scholar
Priestley, R. J. Beneficiation of Phosphate Rock. United States Patent Office Patent no. US4083929, 1978. https://patents.google.com/patent/US4083929A/en?oq=US4083929 (accessed Sep 13, 2021).Search in Google Scholar
Pyagaj, A. G.; Beglov, B. M.; Kim-Lin-Zu, V. A.; Borukhov, I. A. Method of Enriching Phosphorities. State Patent Office of the USSR Patent no. SU1555315A1, 1990. https://yandex.ru/patents/doc/SU1555315A1_19900407 (accessed Sep 27, 2021).Search in Google Scholar
Rambabu, C.; Majumdar, K. K.; Phadnis, A. N. Study of the enrichment of phosphate ore containing calcite from the Kanpur deposit (Rajasthan). Indian J. Technol. 1973, 2(11), 78–82.Search in Google Scholar
Rao, K. H.; Su, F.; Forssberg, K. S. E. Flotation kinetics of apatite from magnetite. In Beneficiation of Phosphates: Advances in Research and Practice; Zhang, P.; El-Shall, H.; Wiegel, R., Eds. SME: Arizona, 1999; pp 103–125.Search in Google Scholar
Rodriguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339; https://doi.org/10.1016/s0734-9750(99)00014-2.Search in Google Scholar PubMed
Ronald, H. E. Enrichment of Natural Phosphates Containing Calcite and the Resulting Products. France Patent Office Patent no. 1398563, 1966.Search in Google Scholar
Sadeddin, W.; Abu-Eishah, S. I. Minimization of free calcium carbonate in hard and medium-hard phosphate rocks using dilute acetic acid solution. Int. J. Miner. Process. 1990, 30(1), 113–125; https://doi.org/10.1016/0301-7516(90)90069-b.Search in Google Scholar
Seitnazarov, A.; Namazov, S.; Beglov, B. Beneficiation of high-calcareous phosphorites of Central Kyzylkum with organic acid solutions. J. Chem. Technol. Metall. 2014, 49(4), 383–390.Search in Google Scholar
Sengul, H.; Ozer, A. K.; Gulaboglu, M. S. Beneficiation of Mardin-Mazidagi (Turkey) calcareous phosphate rock using dilute acetic acid solution. Chem. Eng. J. 2006, 122(3), 135–140; https://doi.org/10.1016/j.cej.2006.06.005.Search in Google Scholar
Seth, V.; Kumar, R.; Arora, S. C. D.; Biswas, A. K. Disodium dodecyl phosphate as a collector in the calcite–apatite mineral system. Trans. Inst. Min. Metall. 1975, 84, 56–58.Search in Google Scholar
Shao, X.; Bao, Y.; Guo, M. Adsorption properties of dissolved ions and their effects on the separation of collophane and dolomite. In Beneficiation of Phosphate: Theory and Practice; El-Shall, H.; Moudgil, B. M.; Wiegel, R., Eds. SME: Arizona, 1993; pp 267–284.Search in Google Scholar
Shao, X.; Jiang, C. L.; Parekh, P. K. Enhanced flotation separation of phosphate and dolomite using a new amphoteric collector. SME Min. Metall. Process 1998, 15(2), 11–14; https://doi.org/10.1007/bf03402791.Search in Google Scholar
Sikharulidze, N. G.; Kapanadze, E. S.; Tskhakaya, N. S. Method of Concentrating Phosphorus-Containing Ores. State Patent Office of the USSR Patent no. SU 1392063A1, 1988. https://yandex.ru/patents/doc/SU1392063A1_19880430 (accessed Sep 27, 2021).Search in Google Scholar
Smirnov, J. M.; Mash’janova, A. V.; Ajzenshtat, M. D.; Kim, J. P. Povyshenie jeffektivnosti obogashhenija fosfatno-karbonatnyh rud pri pomoshhi obzhiga [Increasing the efficiency of phosphate-carbonate ore enrichment by firing]. Proc. Res. Inst. Min. Chem. Raw Mater. 1977, 39, 87–92.Search in Google Scholar
Sun, K.; Liu, T.; Zhang, Y.; Liu, X.; Wang, B.; Xu, C. Application and mechanism of anionic collector sodium dodecyl sulfate (SDS) in phosphate beneficiation. Minerals 2017, 7, 29; https://doi.org/10.3390/min7020029.Search in Google Scholar
Swain, A. K.; Patra, H.; Roy, G. K. Mechanical Operations, 1st ed.; Tata McGraw-Hill Education: New York, 2011.Search in Google Scholar
Tawfik, R. B.; Ahmed, Y.; Suzan, S. I.; Khaled, E. Y. A modification in the flotation process of a calcareous–siliceous phosphorite that might improve the process economics. Miner. Eng. 2014, 69, 97–101; https://doi.org/10.1016/j.mineng.2014.07.017.Search in Google Scholar
Tleukulov, O. M.; Dzhurumbaev, A. I.; Berzhanov, D. S.; Menlibekov, U. Z.; Ospanov, S. S.; Ashkinazi, L. A. Method of Concentrating Phosphorites. State Patent Office of the USSR Patent no. SU 1585310A1, 1990. https://yandex.ru/patents/doc/SU1585310A1_19900815 (accessed Sep 27, 2021).Search in Google Scholar
Tleukulov, O. M.; Kim-Lin-Zu, V. A.; Buketov, E. A. Method of Enriching Phosphorities. State Patent Office of the USSR Patent no. SU 290025A1, 1970. https://yandex.ru/patents/doc/SU290025A1_19701222 (accessed Sep 27, 2021).Search in Google Scholar
Treushchenko, N. N.; Lavrova, T. V.; Belyakov, V. A.; Valoven, V. I.; Dementeva, T. A.; Baskakova, M. I.; Shuvalova, N. K. Method for Concentrating Magnesium-Containing Phosphate Raw Material. State Patent Office of the USSR Patent no. SU 1058878A1, 1983. https://yandex.ru/patents/doc/SU1058878A1_19831207 (accessed Sep 27, 2021).Search in Google Scholar
White, J. C.; Goff, T. N.; Good, P. C. Continuous-circuit preparation of phosphoric acid from Florida phosphate matrix. BuMines Rl 1978, 8326, 22.Search in Google Scholar
Wilemon, G. M.; Scheiner, B. J. Leaching of the phosphate values from two Central Florida ores, using H2SO4-methanol mixtures. Bu Mines Rl. 1987, 9094, 9.Search in Google Scholar
Wu, L. L. R.; Shibin, Y. Concentration of dolomitic phosphate rock and recovery of iodine at Wengfu phosphorus mine. In Fifteenth International Mineral Processing Congress. Cannes, 1985; IMPC: France, 1985; pp. 400–411.Search in Google Scholar
Zafar, I. Z. Beneficiation of low grade carbonate-rich phosphate rocks using dilute acetic acid solution. Fert. Res. 1993, 34(2), 173–180; https://doi.org/10.1007/bf00750112.Search in Google Scholar
Zafar, I. Z.; Ashraf, M. Selective leaching kinetics of calcareous phosphate rock in lactic acid. Chem. Eng. J. 2007, 131(1), 41–48; https://doi.org/10.1016/j.cej.2006.12.002.Search in Google Scholar
Zafar, I. Z.; Saeed, A. Mass transfer and reaction kinetics in leaching of calcareous phosphate rock. J. Eng. Horizons 2004, 17(4), 15–21.Search in Google Scholar
Zafar, I. Z.; Anwar, M. M.; Pritchard, D. W. A new route for the beneficiation of low grade calcareous phosphate rocks. Fert. Res. 1996, 44(2), 133–142.10.1007/BF00750803Search in Google Scholar
Zafar, I. Z.; Anwar, M. M.; Pritchard, D. W. Selective leaching of calcareous phosphate rock in formic acid: optimisation of operating conditions. Miner. Eng. 2006, 19(14), 1459–1461; https://doi.org/10.1016/j.mineng.2006.03.006.Search in Google Scholar
Zhang, J. S.; Que, X. L. Mining Agents; Press of Metallurgy Industry: Beijing, 2008. (In Chinese).Search in Google Scholar
Zheng, X.; Smith, R. W. Dolomite depressants in the flotation of apatite and collophane from dolomite. Miner. Eng. 2000, 10(5), 537–545; https://doi.org/10.1016/S0892-6875(97)00031-9.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes
- Graphene-based composite membranes for isotope separation: challenges and opportunities
- Review elucidating graphene derivatives (GO/rGO) supported metal sulfides based hybrid nanocomposites for efficient photocatalytic dye degradation
- Heterotridentate organodiphosphines in Pt(η3-P1X1P2)(Y) (X1 = B, S, or Si) and Pt(η3-P1P2Si1)(Y) derivatives-structural aspects
- Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review
- Review of methods and technologies for the enrichment of low-grade phosphorites
Articles in the same Issue
- Frontmatter
- Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes
- Graphene-based composite membranes for isotope separation: challenges and opportunities
- Review elucidating graphene derivatives (GO/rGO) supported metal sulfides based hybrid nanocomposites for efficient photocatalytic dye degradation
- Heterotridentate organodiphosphines in Pt(η3-P1X1P2)(Y) (X1 = B, S, or Si) and Pt(η3-P1P2Si1)(Y) derivatives-structural aspects
- Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review
- Review of methods and technologies for the enrichment of low-grade phosphorites