Abstract
Schiff bases are in the field of medicinal and material chemistry for a long time. There are several advancements from time to time towards facile synthesis and potential applications. As medicines they have been applied as organic molecules as well as their metal complexes. The activities of metal complexes have been found to increase due to increase lipophilicity in comparison to the corresponding free ligand. Besides simple coordination compounds they have been applied as ionic liquid (IL)- supported and IL-tagged species with far enhanced efficiency. Among metal complexes recent advancement deals with photodynamic therapy to treat a number of tumors with fewer side effects. Schiff bases are efficient ligands and their complexes with almost all metal ions are reported. This mini-review article deals with complexes of Schiff bases with biologically compatible metal ions, Co(II), Cu(II), Zn(II), Pd(II), Ag(I), Pt(II) and their potential uses to combat cancerous cells. Strong hopes are associated with photodynamic therapy and IL-tagged and IL-supported Schiff bases and their complexes.
Funding source: Higher Education Commission, Pakistan
Award Identifier / Grant number: NRPU project No. 1488 and 7327
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: EK acknowledges financial support from HEC, Pakistan through NRPU project No. 1488 and 7327.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abdel-Kader, N. S.; Moustafa, H.; El-Ansary, A. L.; Sherif, O. E.; Farghaly, A. M. A coumarin Schiff base and its Ag(i) and Cu(ii) complexes: synthesis, characterization, DFT calculations and biological applications. New J. Chem. 2021, 45, 7714–7730; https://doi.org/10.1039/d0nj05688j.Search in Google Scholar
Abdel-Monem, R. A.; Khalil, A. M.; Darwesh, O. M.; Hashim, A. I.; Rabie, S. T. Antibacterial properties of carboxymethyl chitosan Schiff-base nanocomposites loaded with silver nanoparticles. J. Macromol. Sci., Pure Appl. Chem. 2020, 57, 145–155; https://doi.org/10.1080/10601325.2019.1674666.Search in Google Scholar
Abdel-Rahman, L. H.; Abu-Dief, A. M.; Atlam, F. M.; Abdel-Mawgoud, A. A. H.; Alothman, A. A.; Alsalme, A. M.; Nafady, A. Chemical, physical, and biological properties of Pd(II), V(IV)O, and Ag(I) complexes of N3 tridentate pyridine-based Schiff base ligand. J. Coord. Chem. 2020, 73, 3150–3173; https://doi.org/10.1080/00958972.2020.1842378.Search in Google Scholar
Abdel-Rahman, L. H.; Abu-Dief, A. M.; Shehata, M. R.; Atlam, F. M.; Abdel-Mawgoud, A. A. H. Some new Ag(I), VO(II) and Pd(II) chelates incorporating tridentate imine ligand: design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Appl. Organomet. Chem. 2019, 33, e4699; https://doi.org/10.1002/aoc.4699.Search in Google Scholar
Abdel-Rahman, L. H.; Adam, M. S. S.; Abu-Dief, A. M.; Moustafa, H.; Basha, M. T.; Aboraia, A. S.; Al-Farhan, B. S.; Ahmed, H. E.-S. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: promising antibiotic and anticancer agents. Appl. Organomet. Chem. 2018, 32, e4527; https://doi.org/10.1002/aoc.4527.Search in Google Scholar
Aboul-Fadl, T.; Bin-Jubair, F. A.; Aboul-Wafa, O. Schiff bases of indoline-2, 3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem. 2010, 45, 4578–4586; https://doi.org/10.1016/j.ejmech.2010.07.020.Search in Google Scholar PubMed
Abu-Dief, A. M.; Abdel-Rahman, L. H.; Abdel-Mawgoud, A. A. H. A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag(I), Pd (II) and VO (II) cations: probing the aspects of DNA interaction. Appl. Organomet. Chem. 2020, 34, e5373.10.1002/aoc.5373Search in Google Scholar
Abu-Dief, A. M.; Abdel-Rahman, L. H.; Shehata, M. R.; Abdel-Mawgoud, A. A. H. Novel azomethine Pd (II)- and VO (II)-based metallo-pharmaceuticals as anticancer, antimicrobial, and antioxidant agents: design, structural inspection, DFT investigation, and DNA interaction. J. Phys. Org. Chem. 2019a, 32, e4009.10.1002/poc.4009Search in Google Scholar
Abu-Dief, A. M.; El-Metwaly, N. M.; Alzahrani, S. O.; Bawazeer, A. M.; Shaaban, S.; Adam, M. S. S. Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: synthesis, characterization, DFT and detailed in-silico confirmation. J. Mol. Liq. 2021, 322, 114977; https://doi.org/10.1016/j.molliq.2020.114977.Search in Google Scholar
Abu-Dief, A. M.; El-Sagher, H. M.; Shehata, M. R. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Appl. Organomet. Chem. 2019b, 33, e4943.10.1002/aoc.4943Search in Google Scholar
Abu-Dief, A. M.; Mohamed, I. M. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133; https://doi.org/10.1016/j.bjbas.2015.05.004.Search in Google Scholar PubMed PubMed Central
Adeleke, A. A.; Zamisa, S. J.; Islam, M. S.; Olofinsan, K.; Salau, V. F.; Mocktar, C.; Omondi, B. Quinoline functionalized Schiff Base silver (I) complexes: interactions with biomolecules and in vitro cytotoxicity, antioxidant and antimicrobial activities. Molecules 2021, 26, 1205; https://doi.org/10.3390/molecules26051205.Search in Google Scholar PubMed PubMed Central
Alberto Rosas‐Ortiz, J.; Pioquinto-Mendoza, J. R.; González-Sebastián, L.; Hernandez-Ortega, S.; Flores-Alamo, M.; Morales-Morales, D. Schiff bases as inspirational motif for the production of Ni (II) and Pd (II) coordination and novel non‐symmetric Ni (II)‐POCOP pincer complexes. Eur. J. Inorg. Chem. 2021, 2021, 2452–2463.10.1002/ejic.202100146Search in Google Scholar
Alfaifi, M. Y.; Elbehairi, S. E. I.; Hafez, H. S.; Elshaarawy, R. F. M. Spectroscopic exploration of binding of new imidazolium-based palladium(II) saldach complexes with CT-DNA as anticancer agents against HER2/neu overexpression. J. Mol. Struct. 2019, 1191, 118–128; https://doi.org/10.1016/j.molstruc.2019.04.119.Search in Google Scholar
Ali, M. M.; Bitu, M. N. A.; Hossain, M. S.; Hossen, M. F.; Asraf, M. A.; Farooque, M. A.; Zahan, M. K.-E. One pot synthesis of Cu (II) and Ni (II) peroxo complexes containing Schiff base: physicochemical, spectral and antibacterial investigations. Asian J. Chem. Sci. 2020, 8, 15–21; https://doi.org/10.9734/ajocs/2020/v8i119032.Search in Google Scholar
Al-Khathami, N. D.; Al-Rashdi, K. S.; Babgi, B. A.; Hussien, M. A.; Nadeem Arshad, M.; Eltayeb, N. E.; Elsilk, S. E.; Lasri, J.; Basaleh, A. S.; Al-Jahdali, M. Spectroscopic and biological properties of platinum complexes derived from 2-pyridyl Schiff bases. J. Saudi Chem. Soc. 2019, 23, 903–915; https://doi.org/10.1016/j.jscs.2019.03.004.Search in Google Scholar
Al-Zaidi, B. H.; Hasson, M. M.; Ismail, A. H. New complexes of chelating Schiff base: synthesis, spectral investigation, antimicrobial, and thermal behavior studies. J. Appl. Pharmaceut. Sci. 2019, 9, 045–057.10.7324/JAPS.2019.90406Search in Google Scholar
Anjaneyulu, Y.; Rao, R. P. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu (II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 257–272; https://doi.org/10.1080/00945718608057530.Search in Google Scholar
Arunadevi, A.; Raman, N. Biological response of Schiff base metal complexes incorporating amino acids – a short review. J. Coord. Chem. 2020, 73, 2095–2116; https://doi.org/10.1080/00958972.2020.1824293.Search in Google Scholar
Arya, S.; Kumar, N.; Roy, P.; Sondhi, S. M. Synthesis of amidine and bis amidine derivatives and their evaluation for anti-inflammatory and anticancer activity. Eur. J. Med. Chem. 2013, 59, 7–14; https://doi.org/10.1016/j.ejmech.2012.10.046.Search in Google Scholar PubMed
Aslan, H. G.; Akkoç, S.; Kökbudak, Z. Anticancer activities of various new metal complexes prepared from a Schiff base on A549 cell line. Inorg. Chem. Commun. 2020, 111, 107645; https://doi.org/10.1016/j.inoche.2019.107645.Search in Google Scholar
Banerjee, S.; Capper, M. S.; Clarkson, G. J.; Huang, H.; Sadler, P. J. Dual-action platinum(II) Schiff base complexes: photocytotoxicity and cellular imaging. Polyhedron 2019, 172, 157–166; https://doi.org/10.1016/j.poly.2019.04.024.Search in Google Scholar
Benhassine, A.; Boulebd, H.; Anak, B.; Bouraiou, A.; Bouacida, S.; Bencharif, M.; Belfaitah, A. Copper (II) and zinc (II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo [d] imidazol-2-yl) methanol derivative: synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity. J. Mol. Struct. 2018, 1160, 406–414; https://doi.org/10.1016/j.molstruc.2018.02.033.Search in Google Scholar
Billman, J. H.; Tai, K. M. Reduction of Schiff bases. II. Benzhydrylamines and structurally related compounds1a, b. J. Org. Chem. 1958, 23, 535–539; https://doi.org/10.1021/jo01098a009.Search in Google Scholar
Bitu, M. N. A.; Hossain, M. S.; Zahid, A. A. S. M.; Zakaria, C. M.; Kudrat-E-Zahan, M. Anti-pathogenic activity of Cu (II) complexes incorporating Schiff bases: a short review. Am. J. Heterocycl. Chem. 2019, 5, 11–23; https://doi.org/10.11648/j.ajhc.20190501.14.Search in Google Scholar
Boyer, J. H.; Canter, F. Alkyl and aryl azides. Chem. Rev. 1954, 54, 1–57; https://doi.org/10.1021/cr60167a001.Search in Google Scholar
Bringmann, G.; Dreyer, M.; Faber, J. H.; Dalsgaard, P. W.; Stærk, D.; Jaroszewski, J. W.; Ndangalasi, H.; Mbago, F.; Brun, R.; Christensen, S. B. Ancistrotanzanine C and related 5, 1′-and 7, 3′-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J. Nat. Prod. 2004, 67, 743–748; https://doi.org/10.1021/np0340549.Search in Google Scholar PubMed
Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett. 2004, 45, 7641–7644; https://doi.org/10.1016/j.tetlet.2004.08.097.Search in Google Scholar
Chandra, S.; Jain, D.; Sharma, A. K.; Sharma, P. Coordination modes of a Schiff base pentadentate derivative of 4-aminoantipyrine with cobalt (II), nickel (II) and copper (II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules 2009, 14, 174–190; https://doi.org/10.3390/molecules14010174.Search in Google Scholar PubMed PubMed Central
Cifuentes-Vaca, O. L.; Andrades-Lagos, J.; Campanini-Salinas, J.; Laguna, A.; Vásquez-Velásquez, D.; Concepción Gimeno, M. Silver(I) and copper(I) complexes with a Schiff base derived from 2-aminofluorene with promising antibacterial activity. Inorg. Chim. Acta. 2019, 489, 275–279; https://doi.org/10.1016/j.ica.2019.02.033.Search in Google Scholar
Creaven, B. S.; Duff, B.; Egan, D. A.; Kavanagh, K.; Rosair, G.; Thangella, V. R.; Walsh, M. Anticancer and antifungal activity of copper (II) complexes of quinolin-2 (1H)-one-derived Schiff bases. Inorg. Chim. Acta. 2010, 363, 4048–4058; https://doi.org/10.1016/j.ica.2010.08.009.Search in Google Scholar
Cree, I. A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017, 17, 1–8; https://doi.org/10.1186/s12885-016-2999-1.Search in Google Scholar PubMed PubMed Central
da Silva, S. A.; Leite, C. Q. F.; Pavan, F. R.; Masciocchi, N.; Cuin, A. Coordinative versatility of a Schiff base containing thiophene: synthesis, characterization and biological activity of zinc(II) and silver(I) complexes. Polyhedron 2014, 79, 170–177; https://doi.org/10.1016/j.poly.2014.04.043.Search in Google Scholar
Deng, J.; Wang, J.; Khan, M.; Yu, P.; Yang, F.; Liang, H. Structure and biological properties of five Pt(II) complexes as potential anticancer agents. J. Inorg. Biochem. 2018, 185, 10–16; https://doi.org/10.1016/j.jinorgbio.2018.04.017.Search in Google Scholar PubMed
Deng, J.; Yu, P.; Zhang, Z.; Zhang, J.; Zhewen, S.; Cai, M.; Yuan, H.; Liang, H.; Yang, F. Novel Pt(ii) complexes with modified aryl-hydrazone Schiff-base ligands: synthesis, cytotoxicity and action mechanism†. Metallomics 2019, 11, 1847–1863; https://doi.org/10.1039/c9mt00193j.Search in Google Scholar PubMed
Dharmaraj, N.; Viswanathamurthi, P.; Natarajan, K. Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Met. Chem. 2001, 26, 105–109; https://doi.org/10.1023/a:1007132408648.10.1023/A:1007132408648Search in Google Scholar
Donaldson, P. T. The Textbook of Hepatology: From Basic Science to Clinical Practice, 3rd ed.; John Wiley & Sons: Oxford, UK, 2008.Search in Google Scholar
Echevarria, A.; Nascimento, M. D. G.; Gerônimo, V.; Miller, J.; Giesbrecht, A. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal. J. Braz. Chem. Soc. 1999, 10, 60–64; https://doi.org/10.1590/s0103-50531999000100010.Search in Google Scholar
Ejidike, I. P.; Ajibade, P. A. Synthesis, characterization and biological studies of metal (II) complexes of (3E)-3-[(2-{(E)-[1-(2, 4-dihydroxyphenyl) ethylidene] amino} ethyl) imino]-1-phenylbutan-1-one Schiff base. Molecules 2015a, 20, 9788–9802; https://doi.org/10.3390/molecules20069788.Search in Google Scholar PubMed PubMed Central
Ejidike, I. P.; Ajibade, P. A. Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: progress and prospects. Rev. Inorg. Chem. 2015b, 35, 191–224; https://doi.org/10.1515/revic-2015-0007.Search in Google Scholar
El-Sherif, A. A.; Eldebss, T. M. A. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene. Spectrochim. Acta Mol. Biomol. Spectrosc. 2011, 79, 1803–1814; https://doi.org/10.1016/j.saa.2011.05.062.Search in Google Scholar PubMed
El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A. Molecular docking, DNA binding, thermal studies and antimicrobial activities of Schiff base complexes. J. Mol. Liq. 2016, 218, 434–456; https://doi.org/10.1016/j.molliq.2016.02.072.Search in Google Scholar
Fareed, G.; Versiani, M. A.; Afza, N.; Fareed, N.; Iqbal, L.; Lateef, M. Structure activity relationship: antioxidant potential of some novel Schiff bases containing benzophenone moiety. Int. J. Curr. Pharmaceut. Res. 2013, 5, 61–64.Search in Google Scholar
Filipović, N. R.; Marković, I.; Mitić, D.; Polović, N.; Milčić, M.; Dulović, M.; Jovanović, M.; Savić, M.; Nikšić, M.; Anđelković, K.; Todorović, T. A comparative study of in vitro cytotoxic, antioxidant, and antimicrobial activity of Pt(II), Zn(II), Cu(II), and Co(III) complexes with N-heteroaromatic Schiff base (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetate. J. Biochem. Mol. Toxicol. 2014, 28, 99–110; https://doi.org/10.1002/jbt.21541.Search in Google Scholar PubMed
Fonkui, T. Y.; Ikhile, M. I.; Ndinteh, D. T.; Njobeh, P. B. Microbial activity of some heterocyclic Schiff bases and metal complexes: a review. Trop. J. Pharmaceut. Res. 2018, 17, 2507–2518.10.4314/tjpr.v17i12.29Search in Google Scholar
Gaballa, A. S.; Asker, M. S.; Barakat, A. S.; Teleb, S. M. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine. Spectrochim. Acta Mol. Biomol. Spectrosc. 2007, 67, 114–121; https://doi.org/10.1016/j.saa.2006.06.031.Search in Google Scholar PubMed
Gaber, M.; El-Ghamry, H. A.; Fathalla, S. K. Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 139, 396–404; https://doi.org/10.1016/j.saa.2014.12.057.Search in Google Scholar PubMed
Ghorab, M. M.; Shaaban, M. A.; Refaat, H. M.; Heiba, H. I.; Ibrahim, S. S. Anticancer and radiosensitizing evaluation of some new pyranothiazole-Schiff bases bearing the biologically active sulfonamide moiety. Eur. J. Med. Chem. 2012, 53, 403–407; https://doi.org/10.1016/j.ejmech.2012.04.009.Search in Google Scholar PubMed
Ghosh, P.; Dey, S.; Ara, M.; Karim, K.; Islam, A. B. M. N. A review on synthesis and versatile applications of some selected Schiff bases with their transition metal complexes. Egypt. J. Chem. 2019, 62(Special Issue (Part 2) Innovation in Chemistry), 523–547 https://doi.org/10.21608/ejchem.2019.13741.1852.Search in Google Scholar
Golbedaghi, R.; Tabanez, A. M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic Schiff base ligands and their metal complexes: a survey of the literature (2005–2019). Appl. Organomet. Chem. 2020, 34, e5884; https://doi.org/10.1002/aoc.5884.Search in Google Scholar
Gou, Y.; Li, J.; Fan, B.; Xu, B.; Zhou, M.; Yang, F. Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents. Eur. J. Med. Chem. 2017, 134, 207–217; https://doi.org/10.1016/j.ejmech.2017.04.026.Search in Google Scholar PubMed
Gülcan, M.; Sönmez, M.; Berber, İ. Synthesis, characterization, and antimicrobial activity of a new pyrimidine Schiff base and its Cu (II), Ni (II), Co (II), Pt (II), and Pd (II) complexes. Turk. J. Chem. 2012, 36, 189–200.10.3906/kim-1104-2Search in Google Scholar
Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L.; Li, P. Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr. Res. 2007, 342, 1329–1332; https://doi.org/10.1016/j.carres.2007.04.006.Search in Google Scholar PubMed
Halliwell, B.; Gutteridge, J. M. Free radicals in biology and medicine; Oxford University Press: USA, 2015.10.1093/acprof:oso/9780198717478.001.0001Search in Google Scholar
Hameed, A.; Al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K. M. Schiff bases in medicinal chemistry: a review (2010–2015). Expert Opin. Ther. Pat. 2017, 27, 63–79; https://doi.org/10.1080/13543776.2017.1252752.Search in Google Scholar PubMed
Hasnaoui, A.; Hdoufane, I.; Idouhli, R.; Therrien, B.; Ait Ali, M.; El Firdoussi, L. Crystal structure of {N-(2-hydroxyethylamino) ethylsalicylaldiminato]-palladium(II) chloride}: synthesis, X-ray structure, electrochemistry, DFT and TDDFT studies. J. Mol. Struct. 2019, 1176, 703–710; https://doi.org/10.1016/j.molstruc.2018.08.111.Search in Google Scholar
Hassanpour, S. H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017, 4, 127–129; https://doi.org/10.1016/j.jcrpr.2017.07.001.Search in Google Scholar
Hossain, M.; Voon, L. H. Mixed-ligand Ni (II), Co (II) and Fe (II) complexes as catalysts for esterification of biomass-derived levulinic acid with polyol and in situ reduction via hydrogenation with NaBH4. J. Renew.Mater. 2019, 7, 731–748; https://doi.org/10.32604/jrm.2019.04703.Search in Google Scholar
Hossain, M. M.; Bashar, M. A.; Khan, M. N.; Roy, P. K.; Mannan, M. A.; Ali, M. S.; Farooque, M. A. Selected Schiff base coordination complexes and their microbial application: a review. Int. J. Chem. Stud 2018a, 6, 19–31; https://doi.org/10.11648/j.ajac.20180604.13.Search in Google Scholar
Hossain, M. M.; Bashar, M. A.; Khan, M. N.; Roy, P. K.; Mannan, M. A.; Ali, M. S.; Farooque, M. A. Physical and spectral characterization of Ni (II) Cu (II) Co (II) and Cd (II) complexes with Schiff base of salicylaldehyde and 2-aminopyridine towards potential microbial application. Am. J. Appl. Chem. 2018b, 6, 147–155; https://doi.org/10.11648/j.ajac.20180604.13.Search in Google Scholar
Hranjec, M.; Starčević, K.; Pavelić, S. K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Synthesis, spectroscopic characterization and antiproliferative evaluation in vitro of novel Schiff bases related to benzimidazoles. Eur. J. Med. Chem. 2011, 46, 2274–2279; https://doi.org/10.1016/j.ejmech.2011.03.008.Search in Google Scholar PubMed
Huang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Cu (I)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions. Tetrahedron Lett. 2013, 54, 2861–2864; https://doi.org/10.1016/j.tetlet.2013.03.098.Search in Google Scholar
Hyndman, I. J. The contribution of both nature and nurture to carcinogenesis and progression in solid tumours. Cancer Microenviron. 2016, 9, 63–69; https://doi.org/10.1007/s12307-016-0183-4.Search in Google Scholar PubMed PubMed Central
Ibrahim, M.; Khan, A.; Ikram, M.; Rehman, S.; Shah, M.; Nabi, H.; Ahuchaogu, A. In Vitro antioxidant properties of novel Schiff base complexes. Asian J. Chem. Sci. 2017, 2, 1–12; https://doi.org/10.9734/ajocs/2017/32244.Search in Google Scholar
Ibrahim, D. H.; Saleem, A. J.; Awad, A. A.; Ahmed, H. S.; Shneshil, M. K. Antioxidant and antibacterial activity of some 2-amino-1, 3, 4-thiadiazole Schiff’s bases. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, Vol. 1294, 2019; p. 052029.10.1088/1742-6596/1294/5/052029Search in Google Scholar
Ismail, B. A.; Nassar, D. A.; Abd El–Wahab, Z. H.; Ali, O. A. M. Synthesis, characterization, thermal, DFT computational studies and anticancer activity of furfural-type Schiff base complexes. J. Mol. Struct. 2021, 1227, 129393; https://doi.org/10.1016/j.molstruc.2020.129393.Search in Google Scholar
Jean, S.; Cormier, K.; Patterson, A. E.; Vogels, C. M.; Decken, A.; Robichaud, G. A.; Turcotte, S.; Westcott, S. A. Synthesis, characterization, and anticancer properties of organometallic Schiff base platinum complexes. Can. J. Chem. 2015, 93, 1140–1146; https://doi.org/10.1139/cjc-2015-0157.Search in Google Scholar
Jiang, L.; Jin, L.; Tian, H.; Yuan, X.; Yu, X.; Xu, Q. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions. Chem. Commun. 2011, 47, 10833–10835; https://doi.org/10.1039/c1cc14242a.Search in Google Scholar PubMed
Kalaivani, S.; Priya, N. P.; Arunachalam, S. Schiff bases: facile synthesis, spectral characterization and biocidal studies. Int. J. Appl. Biol. Pharmaceut. Technol. 2012, 3, 219–223.Search in Google Scholar
Kargar, H.; Adabi Ardakani, A.; Munawar, K. S.; Ashfaq, M.; Tahir, M. N. Nickel(II), copper(II) and zinc(II) complexes containing symmetrical tetradentate Schiff base ligand derived from 3,5-diiodosalicylaldehyde: synthesis, characterization, crystal structure and antimicrobial activity. J. Iran. Chem. Soc. 2021a, 18, 2493–2503; https://doi.org/10.1007/s13738-021-02207-x.Search in Google Scholar
Kargar, H.; Aghaei-Meybodi, F.; Elahifard, M. R.; Tahir, M. N.; Ashfaq, M.; Munawar, K. S. Some new Cu(II) complexes containing O,N-donor Schiff base ligands derived from 4-aminoantipyrine: synthesis, characterization, crystal structure and substitution effect on antimicrobial activity. J. Coord. Chem. 2021b, 74, 1534–1549; https://doi.org/10.1080/00958972.2021.1900831.Search in Google Scholar
Karthikeyan, M. S.; Prasad, D. J.; Poojary, B.; Subrahmanya Bhat, K.; Holla, B. S.; Kumari, N. S. Synthesis and biological activity of Schiff and Mannich bases bearing 2, 4-dichloro-5-fluorophenyl moiety. Bioorg. Med. Chem. 2006, 14, 7482–7489; https://doi.org/10.1016/j.bmc.2006.07.015.Search in Google Scholar PubMed
Katwal, R.; Kaur, H.; Kapur, B. K. Applications of copper—Schiff’s base complexes: a review. Sci. Rev. Chem. Commun. 2013, 3, 1–15.Search in Google Scholar
Kayser, O.; Kiderlen, A. F.; Croft, S. L. Natural products as potential antiparasitic drugs. Stud. Nat. Prod. Chem. 2002, 26, 779–848; https://doi.org/10.1016/s1572-5995(02)80019-9.Search in Google Scholar
Khungar, B.; Rao, M. S.; Pericherla, K.; Nehra, P.; Jain, N.; Panwar, J.; Kumar, A. Synthesis, characterization and microbiocidal studies of novel ionic liquid tagged Schiff bases. Compt. Rendus Chem. 2012, 15, 669–674; https://doi.org/10.1016/j.crci.2012.05.023.Search in Google Scholar
Kigoshi, S.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. Structure–property relationship of phenoxyimine ligands/metal chloride initiating systems for controlled cationic polymerizations of alkyl vinyl ethers. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2021–2029; https://doi.org/10.1002/pola.29458.Search in Google Scholar
Kim, S. New and emerging factors in tumorigenesis: an overview. Cancer Manag. Res. 2015, 7, 225; https://doi.org/10.2147/cmar.s47797.Search in Google Scholar
Kumaravel, G.; Utthra, P. P.; Raman, N. DNA fastening and scission actions of Cu(II), Co(II), Ni(II) and Zn(II) complexes: synthesis, spectral characterization and cytotoxic study. Appl. Organomet. Chem. 2018, 32, e4010; https://doi.org/10.1002/aoc.4010.Search in Google Scholar
Langheld, K. Über das Verhalten von α‐Aminosäuren gegen Natriumhypochlorit. Ber. Dtsch. Chem. Ges. 1909, 42, 2360–2374; https://doi.org/10.1002/cber.190904202134.Search in Google Scholar
Le Thuy, T.; Xuan Tien, H.; Dinh Hoang, V.; Khac Vu, T. Design, synthesis and in vitro antimalarial evaluation of new quinolinylhydrazone derivatives. Lett. Drug Des. Discov. 2012, 9, 163–168.10.2174/157018012799079815Search in Google Scholar
Li, L.-J.; Wang, C.; Tian, C.; Yang, X.-Y.; Hua, X.-X.; Du, J.-L. Water-soluble platinum (II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res. Chem. Intermed. 2013, 39, 733–746; https://doi.org/10.1007/s11164-012-0593-y.Search in Google Scholar
Li, Y.; Yang, Z.-Y.; Wu, J.-C. Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone. Eur. J. Med. Chem. 2010, 45, 5692–5701; https://doi.org/10.1016/j.ejmech.2010.09.025.Search in Google Scholar PubMed
Look, G. C.; Murphy, M. M.; Campbell, D. A.; Gallop, M. A. Trimethylorthoformate: a mild and effective dehydrating reagent for solution and solid phase imine formation. Tetrahedron Lett. 1995, 36, 2937–2940; https://doi.org/10.1016/0040-4039(95)00442-f.Search in Google Scholar
Love, B. E.; Ren, J. Synthesis of sterically hindered imines. J. Org. Chem. 1993, 58, 5556–5557; https://doi.org/10.1021/jo00072a051.Search in Google Scholar
Maggi, A.; Madsen, R. Dehydrogenative synthesis of imines from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. Organometallics 2012, 31, 451–455; https://doi.org/10.1021/om201095m.Search in Google Scholar
Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 2018, 9, 409–436; https://doi.org/10.1039/c7md00526a.Search in Google Scholar PubMed PubMed Central
Malik, S.; Ghosh, S.; Jain, B.; Singh, A.; Bhattacharya, M. Synthesis, characterization, and biological evaluation of some 3d-metal complexes of Schiff base derived from xipamide drug. Int. J. Inorg. Chem. 2013, 2013, 1–6; https://doi.org/10.1155/2013/549805.Search in Google Scholar
Martins, C.; da Silva, D. L.; Neres, A. T. M.; Magalhaes, T. F. F.; Watanabe, G. A.; Modolo, L. V.; Sabino, A. A.; de Fatima, A.; de Resende, M. A. Curcumin as a promising antifungal of clinical interest. J. Antimicrob. Chemother. 2009, 63, 337–339; https://doi.org/10.1093/jac/dkn488.Search in Google Scholar PubMed
Matela, G. Schiff bases and complexes: a review on anti-cancer activity. Anti Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Anti Cancer Agents) 2020, 20, 1908–1917; https://doi.org/10.2174/1871520620666200507091207.Search in Google Scholar PubMed
McGinley, J.; McCann, M.; Ni, K.; Tallon, T.; Kavanagh, K.; Devereux, M.; Ma, X.; McKee, V. Imidazole Schiff base ligands: synthesis, coordination complexes and biological activities. Polyhedron 2013, 55, 169–178; https://doi.org/10.1016/j.poly.2013.03.023.Search in Google Scholar
Mishra, A. P.; Mishra, R.; Jain, R.; Gupta, S. Synthesis of new VO (II), Co (II), Ni (II) and Cu (II) complexes with isatin-3-chloro-4-floroaniline and 2-pyridinecarboxylidene-4-aminoantipyrine and their antimicrobial studies. Mycobiology 2012, 40, 20–26; https://doi.org/10.5941/myco.2012.40.1.020.Search in Google Scholar PubMed PubMed Central
Mohamed, R. G.; Elantabli, F. M.; Abdel Aziz, A. A.; Moustafa, H.; El-Medani, S. M. Synthesis, characterization, NLO properties, antimicrobial, CT-DNA binding and DFT modeling of Ni(II), Pd(II), Pt(II), Mo(IV) and Ru(I) complexes with NOS Schiff base. J. Mol. Struct. 2019, 1176, 501–514; https://doi.org/10.1016/j.molstruc.2018.08.113.Search in Google Scholar
Mohammadi, A.; Doctorsafaei, A. H.; Burujeny, S. B.; Rudbari, H. A.; Kordestani, N.; Ayati Najafabadi, S. A. Silver(I) complex with a Schiff base ligand extended waterborne polyurethane: a developed strategy to obtain a highly stable antibacterial dispersion impregnated with in situ formed silver nanoparticles. Chem. Eng. J. 2020, 381, 122776; https://doi.org/10.1016/j.cej.2019.122776.Search in Google Scholar
Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219.Search in Google Scholar
More, M. S.; Joshi, P. G.; Mishra, Y. K.; Khanna, P. K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater. Today Chem. 2019, 14, 100195; https://doi.org/10.1016/j.mtchem.2019.100195.Search in Google Scholar PubMed PubMed Central
Nagesh, G.; Raj, K. M.; Mruthyunjayaswamy, B. Synthesis, characterization, thermal study and biological evaluation of Cu (II), Co (II), Ni (II) and Zn (II) complexes of Schiff base ligand containing thiazole moiety. J. Mol. Struct. 2015, 1079, 423–432; https://doi.org/10.1016/j.molstruc.2014.09.013.Search in Google Scholar
Nair, M. S.; Arish, D.; Joseyphus, R. S. Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes. J. Saudi Chem. Soc. 2012, 16, 83–88; https://doi.org/10.1016/j.jscs.2010.11.002.Search in Google Scholar
Neelakantan, M.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal (II) complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2008, 71, 1599–1609; https://doi.org/10.1016/j.saa.2008.06.008.Search in Google Scholar PubMed
Nemati, L.; Keypour, H.; Shahabadi, N.; Hadidi, S.; William Gable, R. Synthesis, characterization and DNA interaction of a novel Pt(II) macroacyclic Schiff base complex containing the piperazine moiety and its cytotoxicity and molecular docking. J. Mol. Liq. 2021, 337, 116292; https://doi.org/10.1016/j.molliq.2021.116292.Search in Google Scholar
Njogu, E. M.; Omondi, B.; Nyamori, V. O. Silver(I)-pyridinyl Schiff base complexes: synthesis, characterisation and antimicrobial studies. J. Mol. Struct. 2017, 1135, 118–128; https://doi.org/10.1016/j.molstruc.2017.01.061.Search in Google Scholar
Omar, M.; Mohamed, G.; Hindy, A. Transition metal complexes of heterocyclic Schiff base: biological activity, spectroscopic and thermal characterization. J. Therm. Anal. Calorim. 2006, 86, 315–325; https://doi.org/10.1007/s10973-006-7095-3.Search in Google Scholar
Ossowicz, P.; Janus, E.; Schroeder, G.; Rozwadowski, Z. Spectroscopic studies of amino acid ionic liquid-supported Schiff bases. Molecules 2013, 18, 4986–5004; https://doi.org/10.3390/molecules18054986.Search in Google Scholar PubMed PubMed Central
Ossowicz, P.; Janus, E.; Szady-Chełmieniecka, A.; Rozwadowski, Z. Influence of modification of the amino acids ionic liquids on their physico-chemical properties: ionic liquids versus ionic liquids-supported Schiff bases. J. Mol. Liq. 2016, 224, 211–218; https://doi.org/10.1016/j.molliq.2016.09.111.Search in Google Scholar
Pandeya, S.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine. Il Farmaco 1999, 54, 624–628; https://doi.org/10.1016/s0014-827x(99)00075-0.Search in Google Scholar PubMed
Panneerselvam, P.; Nair, R. R.; Vijayalakshmi, G.; Subramanian, E. H.; Sridhar, S. K. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur. J. Med. Chem. 2005, 40, 225–229; https://doi.org/10.1016/j.ejmech.2004.09.003.Search in Google Scholar PubMed
Patil, M. K.; Masand, V. H.; Maldhure, A. K. Schiff base metal complexes precursor for metal oxide nanomaterials: a review. Curr. Nanosci. 2021, 17, 634–645; https://doi.org/10.2174/1573413716999201127112204.Search in Google Scholar
Patterson, A. E.; Miller, J. J.; Miles, B. A.; Stewart, E. L.; Melanson, J.-M. E. J.; Vogels, C. M.; Cockshutt, A. M.; Decken, A.; Morin, P.; Westcott, S. A. Synthesis, characterization and anticancer properties of (salicylaldiminato)platinum(II) complexes. Inorg. Chim. Acta. 2014, 415, 88–94; https://doi.org/10.1016/j.ica.2014.02.028.Search in Google Scholar
Proetto, M.; Liu, W.; Hagenbach, A.; Abram, U.; Gust, R. Synthesis, characterization and in vitro antitumour activity of a series of novel platinum(II) complexes bearing Schiff base ligands. Eur. J. Med. Chem. 2012, 53, 168–175; https://doi.org/10.1016/j.ejmech.2012.03.053.Search in Google Scholar PubMed
Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: a short survey on an evergreen chemistry tool. Molecules 2013, 18, 12264–12289; https://doi.org/10.3390/molecules181012264.Search in Google Scholar PubMed PubMed Central
Radi, S.; Tighadouini, S.; Feron, O.; Riant, O.; Mabkhot, Y. N. Synthesis and evaluation of certain symmetrical Schiff bases as inhibitors of MDA-MB-241 human breast cancer cell proliferation. Lett. Drug Des. Discov. 2016, 13, 205–209; https://doi.org/10.2174/1570180812999150812165510.Search in Google Scholar
Ramadan, R. M.; El‐Medani, S. M.; Makhlouf, A.; Moustafa, H.; Afifi, M. A.; Haukka, M.; Abdel Aziz, A. Spectroscopic, density functional theory, nonlinear optical properties and in vitro biological studies of Co(II), Ni(II), and Cu(II) complexes of hydrazide Schiff base derivatives. Appl. Organomet. Chem. 2021, 35, e6246; https://doi.org/10.1002/aoc.6246.Search in Google Scholar
Rathelot, P.; Vanelle, P.; Gasquet, M.; Delmas, F.; Crozet, M.; Timon-David, P.; Maldonado, J. Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. Eur. J. Med. Chem. 1995, 30, 503–508; https://doi.org/10.1016/0223-5234(96)88261-4.Search in Google Scholar
Rauf, A.; Shah, A.; Munawar, K. S.; Khan, A. A.; Abbasi, R.; Yameen, M. A.; Khan, A. M.; Khan, A. R.; Qureshi, I. Z.; Kraatz, H.-B.; Zia-ur-Rehman Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal (II) complexes. J. Mol. Struct. 2017, 1145, 132–140; https://doi.org/10.1016/j.molstruc.2017.05.098.Search in Google Scholar
Rauf, A.; Shah, A.; Munawar, K. S.; Ali, S.; Nawaz Tahir, M.; Javed, M.; Khan, A. M. Synthesis, physicochemical elucidation, biological screening and molecular docking studies of a Schiff base and its metal(II) complexes. Arabian J. Chem. 2020, 13, 1130–1141; https://doi.org/10.1016/j.arabjc.2017.09.015.Search in Google Scholar
Reddelien, G. Über die Zersetzung von Anilen. (Über die katalytische Wirkungsweise von Halogenwasserstoffsäuren bei Kondensationen, II). Ber. Dtsch. Chem. Ges. 1920, 53, 355–358; https://doi.org/10.1002/cber.19200530233.Search in Google Scholar
Rehman, W.; Baloch, M. K.; Muhammad, B.; Badshah, A.; Khan, K. M. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (IV) complexes. Chin. Sci. Bull. 2004, 49, 119–122; https://doi.org/10.1360/03wb0174.Search in Google Scholar
Rezki, N.; Al-Sodies, S. A.; Messali, M.; Bardaweel, S. K.; Sahu, P. K.; Al-blewi, F. F.; Sahu, P. K.; Aouad, M. R. Identification of new pyridinium ionic liquids tagged with Schiff bases: design, synthesis, in silico ADMET predictions and biological evaluations. J. Mol. Liq. 2018, 264, 367–374; https://doi.org/10.1016/j.molliq.2018.05.071.Search in Google Scholar
Rice, L. B. Unmet medical needs in antibacterial therapy. Biochem. Pharmacol. 2006, 71, 991–995; https://doi.org/10.1016/j.bcp.2005.09.018.Search in Google Scholar PubMed
Sacconi, L.; Ciampolini, M.; Maggio, F.; Cavasino, F. P. Studies in coordination chemistry. IX. 1 investigation of the stereochemistry of some complex compounds of cobalt (II) with N-substituted salicylaldimines. J. Am. Chem. Soc. 1962, 84, 3246–3248; https://doi.org/10.1021/ja00876a005.Search in Google Scholar
Saha, S.; Basak, G.; Sinha, B. Physico-chemical characterization and biological studies of newly synthesized metal complexes of an ionic liquid-supported Schiff base: 1-{2-[(2-hydroxy-5-bromobenzylidene)amino]ethyl}-3-ethylimidazolium tetrafluoroborate. J. Chem. Sci. 2018, 130, 9; https://doi.org/10.1007/s12039-017-1409-9.Search in Google Scholar
Şakıyan, İ.; Özdemir, R.; Öğütcü, H. Synthesis, characterization, and antimicrobial activities of new N-(2-hydroxy-1-naphthalidene)-amino acid (L-Tyrosine, L-Arginine, and L-Lysine) Schiff bases and their manganese(III) complexes. Synth React Inorg Met Nano Met Chem 2014, 44, 417–423; doi: https://doi.org/10.1080/15533174.2013.776604, in this issue.10.1080/15533174.2013.776604Search in Google Scholar
Salama, H. E.; Saad, G. R.; Sabaa, M. W. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety. Int. J. Biol. Macromol. 2015, 79, 996–1003; https://doi.org/10.1016/j.ijbiomac.2015.06.009.Search in Google Scholar PubMed
Serag, W. M.; Zahran, F.; Abdelghany, Y. M.; Elshaarawy, R. F. M.; Abdelhamid, M. S. Synthesis and molecular docking of hybrids ionic azole Schiff bases as novel CDK1 inhibitors and anti-breast cancer agents: in vitro and in vivo study. J. Mol. Struct. 2021, 1245, 131041; https://doi.org/10.1016/j.molstruc.2021.131041.Search in Google Scholar
Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S. Synthesis, characterization, and biological evaluation of Schiff base–platinum(II) complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 145, 213–222; https://doi.org/10.1016/j.saa.2015.02.030.Search in Google Scholar PubMed
Shneshil, M. K.; Saleem, A. J. Synthesis and anti-bacterial activity of some novel Schiff’s bases. Biochem. Cell. Arch. 2018, 18, 643–647.Search in Google Scholar
Shukla, S.; Srivastava, R. S.; Shrivastava, S. K.; Sodhi, A.; Kumar, P. Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1, 2-naphthoquinone. Med. Chem. Res. 2013, 22, 1604–1617; https://doi.org/10.1007/s00044-012-0150-7.Search in Google Scholar
Soliman, A. A.; Mohamed, G. G. Study of the ternary complexes of copper with salicylidene-2-aminothiophenol and some amino acids in the solid state. Thermochim. Acta 2004, 421, 151–159; https://doi.org/10.1016/j.tca.2004.03.010.Search in Google Scholar
Solomons, T. G.; Fryhle, C. B.; Snyder, S. A. Organic Chemistry, 12e Binder Ready Version Study Guide & Student Solutions Manual; John Wiley & Sons: New York, US, 2016.Search in Google Scholar
Sönmez, M.; Berber, İ.; Akbaş, E. Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. Eur. J. Med. Chem. 2006, 41, 101–105.10.1016/j.ejmech.2005.10.003Search in Google Scholar PubMed
Soundaranayaki, V.; Kulandaisamy, A.; Arunadevi, A. Synthesis, structural, pharmacological and molecular docking simulations studies of some transition metal complexes. Inorg. Chem. Commun. 2020, 122, 108271; https://doi.org/10.1016/j.inoche.2020.108271.Search in Google Scholar
Souza, A. O. D.; Galetti, F. C. S.; Silva, C. L.; Bicalho, B.; Parma, M. M.; Fonseca, S. F.; Marsaioli, A. J.; Trindade, A. C. L. B.; Gil, R. P. F.; Bezerra, F. S.; Andrade-Neto, M.; Oliveira, M. C. F. D. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quím. Nova 2007, 30, 1563–1566; https://doi.org/10.1590/s0100-40422007000700012.Search in Google Scholar
Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) complexes containing Schiff-base ligands: a promising source for antitumor treatment. Eur. J. Med. Chem. 2021, 211, 113098; https://doi.org/10.1016/j.ejmech.2020.113098.Search in Google Scholar PubMed
Sundriyal, S.; Sharma, R. K.; Jain, R. Current advances in antifungal targets and drug development. Curr. Med. Chem. 2006, 13, 1321–1335; https://doi.org/10.2174/092986706776873023.Search in Google Scholar PubMed
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem. 2013, 21, 3648–3666; https://doi.org/10.1016/j.bmc.2013.04.037.Search in Google Scholar PubMed
Tawfeeq, H. M.; Muslim, R. F.; Abid, O. H.; Owaid, M. N. Synthesis and characterization of novel tetrazole derivatives and evaluation of their anti-candidal activity. Acta Pharm. Sci. 2019, 57, 45; https://doi.org/10.23893/1307-2080.aps.05717.Search in Google Scholar
Uddin, N.; Rashid, F.; Ali, S.; Tirmizi, S. A.; Ahmad, I.; Zaib, S.; Zubair, M.; Diaconescu, P. L.; Tahir, M. N.; Iqbal, J.; Haider, A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020, 38, 3246–3259; https://doi.org/10.1080/07391102.2019.1654924.Search in Google Scholar PubMed
Verma, C.; Quraishi, M. A. Recent progresses in Schiff bases as aqueous phase corrosion inhibitors: design and applications. Coord. Chem. Rev. 2021, 446, 214105; https://doi.org/10.1016/j.ccr.2021.214105.Search in Google Scholar
Vinusha, H. M.; Kollur, S. P.; Begum, M.; Shivamallu, C.; Ramu, R.; Shirahatti, P. S.; Prasad, N.; Veerapur, R.; Ortega-Castro, J.; Frau, J.; Flores-Holguín, N.; Glossman-Mitnik, D. Chemical synthesis, in vitro biological evaluation and theoretical investigations of transition metal complexes derived from 2-(((5-mercapto-1H-pyrrol-2-yl)imino) methyl)6-methoxyphenol. J. Mol. Struct. 2021, 1244, 130920; https://doi.org/10.1016/j.molstruc.2021.130920.Search in Google Scholar
Virnig, B. A.; Baxter, N. N.; Habermann, E. B.; Feldman, R. D.; Bradley, C. J. A matter of race: early-versus late-stage cancer diagnosis. Health Aff. 2009, 28, 160–168; https://doi.org/10.1377/hlthaff.28.1.160.Search in Google Scholar PubMed PubMed Central
Wang, L.-H.; Qiu, X.-Y.; Liu, S.-J. Synthesis, characterization and crystal structures of copper(II), zinc(II) and vanadium(V) complexes, derived from 3-methyl-N′-(1-(pyridin-2-yl)ethylidene)benzohydrazide, with antibacterial activity. J. Coord. Chem. 2019, 72, 962–971; https://doi.org/10.1080/00958972.2019.1590561.Search in Google Scholar
Yamada, S. Advancement in stereochemical aspects of Schiff base metal complexes. Coord. Chem. Rev. 1999, 190–192, 537–555; https://doi.org/10.1016/s0010-8545(99)00099-5.Search in Google Scholar
Yehye, W. A.; Abdul Rahman, N.; Saad, O.; Ariffin, A.; Abd Hamid, S.; Alhadi, A.; Kadir, F.; Yaeghoobi, M.; Matlob, A. Rational design and synthesis of new, high efficiency, multipotent Schiff base-1, 2, 4-triazole antioxidants bearing butylated hydroxytoluene moieties. Molecules 2016, 21, 847; https://doi.org/10.3390/molecules21070847.Search in Google Scholar PubMed PubMed Central
Yernale, N. G.; Bennikallu Hire Mathada, M. Preparation of octahedral Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from 8-formyl-7-hydroxy-4-methyl coumarin: synthesis, characterization and biological study. J. Mol. Struct. 2020, 1220, 128659; https://doi.org/10.1016/j.molstruc.2020.128659.Search in Google Scholar
Zangade, S. B.; Shinde, A.; Shinde, A.; Chavan, S.; Chavan, S.; Vibhute, Y.; Vibhute, Y. Solvent-free, environmentally benign syntheses of some imines and antioxidant activity. Orbital - Electron. J. Chem. 2015, 7, 208–214; https://doi.org/10.17807/orbital.v7i3.608.Search in Google Scholar
Zehra, S.; Shavez Khan, M.; Ahmad, I.; Arjmand, F. New tailored substituted benzothiazole Schiff base Cu (II)/Zn (II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. J. Biomol. Struct. Dyn. 2019, 37, 1863–1879; https://doi.org/10.1080/07391102.2018.1467794.Search in Google Scholar PubMed
Zhao, Y.; Li, Z.; Li, H.; Wang, S.; Niu, M. Synthesis, crystal structure, DNA binding and in vitro cytotoxicity studies of Zn(II) complexes derived from amino-alcohol Schiff-bases. Inorg. Chim. Acta. 2018, 482, 136–143; https://doi.org/10.1016/j.ica.2018.06.008.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes
- Graphene-based composite membranes for isotope separation: challenges and opportunities
- Review elucidating graphene derivatives (GO/rGO) supported metal sulfides based hybrid nanocomposites for efficient photocatalytic dye degradation
- Heterotridentate organodiphosphines in Pt(η3-P1X1P2)(Y) (X1 = B, S, or Si) and Pt(η3-P1P2Si1)(Y) derivatives-structural aspects
- Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review
- Review of methods and technologies for the enrichment of low-grade phosphorites
Articles in the same Issue
- Frontmatter
- Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes
- Graphene-based composite membranes for isotope separation: challenges and opportunities
- Review elucidating graphene derivatives (GO/rGO) supported metal sulfides based hybrid nanocomposites for efficient photocatalytic dye degradation
- Heterotridentate organodiphosphines in Pt(η3-P1X1P2)(Y) (X1 = B, S, or Si) and Pt(η3-P1P2Si1)(Y) derivatives-structural aspects
- Potential applicability of Schiff bases and their metal complexes during COVID-19 pandemic – a review
- Review of methods and technologies for the enrichment of low-grade phosphorites