Home Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes
Article
Licensed
Unlicensed Requires Authentication

Schiff bases and their metal complexes with biologically compatible metal ions; biological importance, recent trends and future hopes

  • Ezzat Khan ORCID logo EMAIL logo , Muhammad Hanif and Muhammad Salim Akhtar
Published/Copyright: November 10, 2021

Abstract

Schiff bases are in the field of medicinal and material chemistry for a long time. There are several advancements from time to time towards facile synthesis and potential applications. As medicines they have been applied as organic molecules as well as their metal complexes. The activities of metal complexes have been found to increase due to increase lipophilicity in comparison to the corresponding free ligand. Besides simple coordination compounds they have been applied as ionic liquid (IL)- supported and IL-tagged species with far enhanced efficiency. Among metal complexes recent advancement deals with photodynamic therapy to treat a number of tumors with fewer side effects. Schiff bases are efficient ligands and their complexes with almost all metal ions are reported. This mini-review article deals with complexes of Schiff bases with biologically compatible metal ions, Co(II), Cu(II), Zn(II), Pd(II), Ag(I), Pt(II) and their potential uses to combat cancerous cells. Strong hopes are associated with photodynamic therapy and IL-tagged and IL-supported Schiff bases and their complexes.


Corresponding author: Ezzat Khan, Department of Chemistry, University of Malakand, Chakdara 18800, Lower Dir, Khyber Pakhtunkhwa, Pakistan; and Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Kingdom of Bahrain, E-mail:

Award Identifier / Grant number: NRPU project No. 1488 and 7327

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: EK acknowledges financial support from HEC, Pakistan through NRPU project No. 1488 and 7327.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdel-Kader, N. S.; Moustafa, H.; El-Ansary, A. L.; Sherif, O. E.; Farghaly, A. M. A coumarin Schiff base and its Ag(i) and Cu(ii) complexes: synthesis, characterization, DFT calculations and biological applications. New J. Chem. 2021, 45, 7714–7730; https://doi.org/10.1039/d0nj05688j.Search in Google Scholar

Abdel-Monem, R. A.; Khalil, A. M.; Darwesh, O. M.; Hashim, A. I.; Rabie, S. T. Antibacterial properties of carboxymethyl chitosan Schiff-base nanocomposites loaded with silver nanoparticles. J. Macromol. Sci., Pure Appl. Chem. 2020, 57, 145–155; https://doi.org/10.1080/10601325.2019.1674666.Search in Google Scholar

Abdel-Rahman, L. H.; Abu-Dief, A. M.; Atlam, F. M.; Abdel-Mawgoud, A. A. H.; Alothman, A. A.; Alsalme, A. M.; Nafady, A. Chemical, physical, and biological properties of Pd(II), V(IV)O, and Ag(I) complexes of N3 tridentate pyridine-based Schiff base ligand. J. Coord. Chem. 2020, 73, 3150–3173; https://doi.org/10.1080/00958972.2020.1842378.Search in Google Scholar

Abdel-Rahman, L. H.; Abu-Dief, A. M.; Shehata, M. R.; Atlam, F. M.; Abdel-Mawgoud, A. A. H. Some new Ag(I), VO(II) and Pd(II) chelates incorporating tridentate imine ligand: design, synthesis, structure elucidation, density functional theory calculations for DNA interaction, antimicrobial and anticancer activities and molecular docking studies. Appl. Organomet. Chem. 2019, 33, e4699; https://doi.org/10.1002/aoc.4699.Search in Google Scholar

Abdel-Rahman, L. H.; Adam, M. S. S.; Abu-Dief, A. M.; Moustafa, H.; Basha, M. T.; Aboraia, A. S.; Al-Farhan, B. S.; Ahmed, H. E.-S. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: promising antibiotic and anticancer agents. Appl. Organomet. Chem. 2018, 32, e4527; https://doi.org/10.1002/aoc.4527.Search in Google Scholar

Aboul-Fadl, T.; Bin-Jubair, F. A.; Aboul-Wafa, O. Schiff bases of indoline-2, 3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem. 2010, 45, 4578–4586; https://doi.org/10.1016/j.ejmech.2010.07.020.Search in Google Scholar PubMed

Abu-Dief, A. M.; Abdel-Rahman, L. H.; Abdel-Mawgoud, A. A. H. A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag(I), Pd (II) and VO (II) cations: probing the aspects of DNA interaction. Appl. Organomet. Chem. 2020, 34, e5373.10.1002/aoc.5373Search in Google Scholar

Abu-Dief, A. M.; Abdel-Rahman, L. H.; Shehata, M. R.; Abdel-Mawgoud, A. A. H. Novel azomethine Pd (II)- and VO (II)-based metallo-pharmaceuticals as anticancer, antimicrobial, and antioxidant agents: design, structural inspection, DFT investigation, and DNA interaction. J. Phys. Org. Chem. 2019a, 32, e4009.10.1002/poc.4009Search in Google Scholar

Abu-Dief, A. M.; El-Metwaly, N. M.; Alzahrani, S. O.; Bawazeer, A. M.; Shaaban, S.; Adam, M. S. S. Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: synthesis, characterization, DFT and detailed in-silico confirmation. J. Mol. Liq. 2021, 322, 114977; https://doi.org/10.1016/j.molliq.2020.114977.Search in Google Scholar

Abu-Dief, A. M.; El-Sagher, H. M.; Shehata, M. R. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Appl. Organomet. Chem. 2019b, 33, e4943.10.1002/aoc.4943Search in Google Scholar

Abu-Dief, A. M.; Mohamed, I. M. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef Univ. J. Basic Appl. Sci. 2015, 4, 119–133; https://doi.org/10.1016/j.bjbas.2015.05.004.Search in Google Scholar PubMed PubMed Central

Adeleke, A. A.; Zamisa, S. J.; Islam, M. S.; Olofinsan, K.; Salau, V. F.; Mocktar, C.; Omondi, B. Quinoline functionalized Schiff Base silver (I) complexes: interactions with biomolecules and in vitro cytotoxicity, antioxidant and antimicrobial activities. Molecules 2021, 26, 1205; https://doi.org/10.3390/molecules26051205.Search in Google Scholar PubMed PubMed Central

Alberto Rosas‐Ortiz, J.; Pioquinto-Mendoza, J. R.; González-Sebastián, L.; Hernandez-Ortega, S.; Flores-Alamo, M.; Morales-Morales, D. Schiff bases as inspirational motif for the production of Ni (II) and Pd (II) coordination and novel non‐symmetric Ni (II)‐POCOP pincer complexes. Eur. J. Inorg. Chem. 2021, 2021, 2452–2463.10.1002/ejic.202100146Search in Google Scholar

Alfaifi, M. Y.; Elbehairi, S. E. I.; Hafez, H. S.; Elshaarawy, R. F. M. Spectroscopic exploration of binding of new imidazolium-based palladium(II) saldach complexes with CT-DNA as anticancer agents against HER2/neu overexpression. J. Mol. Struct. 2019, 1191, 118–128; https://doi.org/10.1016/j.molstruc.2019.04.119.Search in Google Scholar

Ali, M. M.; Bitu, M. N. A.; Hossain, M. S.; Hossen, M. F.; Asraf, M. A.; Farooque, M. A.; Zahan, M. K.-E. One pot synthesis of Cu (II) and Ni (II) peroxo complexes containing Schiff base: physicochemical, spectral and antibacterial investigations. Asian J. Chem. Sci. 2020, 8, 15–21; https://doi.org/10.9734/ajocs/2020/v8i119032.Search in Google Scholar

Al-Khathami, N. D.; Al-Rashdi, K. S.; Babgi, B. A.; Hussien, M. A.; Nadeem Arshad, M.; Eltayeb, N. E.; Elsilk, S. E.; Lasri, J.; Basaleh, A. S.; Al-Jahdali, M. Spectroscopic and biological properties of platinum complexes derived from 2-pyridyl Schiff bases. J. Saudi Chem. Soc. 2019, 23, 903–915; https://doi.org/10.1016/j.jscs.2019.03.004.Search in Google Scholar

Al-Zaidi, B. H.; Hasson, M. M.; Ismail, A. H. New complexes of chelating Schiff base: synthesis, spectral investigation, antimicrobial, and thermal behavior studies. J. Appl. Pharmaceut. Sci. 2019, 9, 045–057.10.7324/JAPS.2019.90406Search in Google Scholar

Anjaneyulu, Y.; Rao, R. P. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu (II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Org. Chem. 1986, 16, 257–272; https://doi.org/10.1080/00945718608057530.Search in Google Scholar

Arunadevi, A.; Raman, N. Biological response of Schiff base metal complexes incorporating amino acids – a short review. J. Coord. Chem. 2020, 73, 2095–2116; https://doi.org/10.1080/00958972.2020.1824293.Search in Google Scholar

Arya, S.; Kumar, N.; Roy, P.; Sondhi, S. M. Synthesis of amidine and bis amidine derivatives and their evaluation for anti-inflammatory and anticancer activity. Eur. J. Med. Chem. 2013, 59, 7–14; https://doi.org/10.1016/j.ejmech.2012.10.046.Search in Google Scholar PubMed

Aslan, H. G.; Akkoç, S.; Kökbudak, Z. Anticancer activities of various new metal complexes prepared from a Schiff base on A549 cell line. Inorg. Chem. Commun. 2020, 111, 107645; https://doi.org/10.1016/j.inoche.2019.107645.Search in Google Scholar

Banerjee, S.; Capper, M. S.; Clarkson, G. J.; Huang, H.; Sadler, P. J. Dual-action platinum(II) Schiff base complexes: photocytotoxicity and cellular imaging. Polyhedron 2019, 172, 157–166; https://doi.org/10.1016/j.poly.2019.04.024.Search in Google Scholar

Benhassine, A.; Boulebd, H.; Anak, B.; Bouraiou, A.; Bouacida, S.; Bencharif, M.; Belfaitah, A. Copper (II) and zinc (II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo [d] imidazol-2-yl) methanol derivative: synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity. J. Mol. Struct. 2018, 1160, 406–414; https://doi.org/10.1016/j.molstruc.2018.02.033.Search in Google Scholar

Billman, J. H.; Tai, K. M. Reduction of Schiff bases. II. Benzhydrylamines and structurally related compounds1a, b. J. Org. Chem. 1958, 23, 535–539; https://doi.org/10.1021/jo01098a009.Search in Google Scholar

Bitu, M. N. A.; Hossain, M. S.; Zahid, A. A. S. M.; Zakaria, C. M.; Kudrat-E-Zahan, M. Anti-pathogenic activity of Cu (II) complexes incorporating Schiff bases: a short review. Am. J. Heterocycl. Chem. 2019, 5, 11–23; https://doi.org/10.11648/j.ajhc.20190501.14.Search in Google Scholar

Boyer, J. H.; Canter, F. Alkyl and aryl azides. Chem. Rev. 1954, 54, 1–57; https://doi.org/10.1021/cr60167a001.Search in Google Scholar

Bringmann, G.; Dreyer, M.; Faber, J. H.; Dalsgaard, P. W.; Stærk, D.; Jaroszewski, J. W.; Ndangalasi, H.; Mbago, F.; Brun, R.; Christensen, S. B. Ancistrotanzanine C and related 5, 1′-and 7, 3′-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J. Nat. Prod. 2004, 67, 743–748; https://doi.org/10.1021/np0340549.Search in Google Scholar PubMed

Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett. 2004, 45, 7641–7644; https://doi.org/10.1016/j.tetlet.2004.08.097.Search in Google Scholar

Chandra, S.; Jain, D.; Sharma, A. K.; Sharma, P. Coordination modes of a Schiff base pentadentate derivative of 4-aminoantipyrine with cobalt (II), nickel (II) and copper (II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules 2009, 14, 174–190; https://doi.org/10.3390/molecules14010174.Search in Google Scholar PubMed PubMed Central

Cifuentes-Vaca, O. L.; Andrades-Lagos, J.; Campanini-Salinas, J.; Laguna, A.; Vásquez-Velásquez, D.; Concepción Gimeno, M. Silver(I) and copper(I) complexes with a Schiff base derived from 2-aminofluorene with promising antibacterial activity. Inorg. Chim. Acta. 2019, 489, 275–279; https://doi.org/10.1016/j.ica.2019.02.033.Search in Google Scholar

Creaven, B. S.; Duff, B.; Egan, D. A.; Kavanagh, K.; Rosair, G.; Thangella, V. R.; Walsh, M. Anticancer and antifungal activity of copper (II) complexes of quinolin-2 (1H)-one-derived Schiff bases. Inorg. Chim. Acta. 2010, 363, 4048–4058; https://doi.org/10.1016/j.ica.2010.08.009.Search in Google Scholar

Cree, I. A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017, 17, 1–8; https://doi.org/10.1186/s12885-016-2999-1.Search in Google Scholar PubMed PubMed Central

da Silva, S. A.; Leite, C. Q. F.; Pavan, F. R.; Masciocchi, N.; Cuin, A. Coordinative versatility of a Schiff base containing thiophene: synthesis, characterization and biological activity of zinc(II) and silver(I) complexes. Polyhedron 2014, 79, 170–177; https://doi.org/10.1016/j.poly.2014.04.043.Search in Google Scholar

Deng, J.; Wang, J.; Khan, M.; Yu, P.; Yang, F.; Liang, H. Structure and biological properties of five Pt(II) complexes as potential anticancer agents. J. Inorg. Biochem. 2018, 185, 10–16; https://doi.org/10.1016/j.jinorgbio.2018.04.017.Search in Google Scholar PubMed

Deng, J.; Yu, P.; Zhang, Z.; Zhang, J.; Zhewen, S.; Cai, M.; Yuan, H.; Liang, H.; Yang, F. Novel Pt(ii) complexes with modified aryl-hydrazone Schiff-base ligands: synthesis, cytotoxicity and action mechanism†. Metallomics 2019, 11, 1847–1863; https://doi.org/10.1039/c9mt00193j.Search in Google Scholar PubMed

Dharmaraj, N.; Viswanathamurthi, P.; Natarajan, K. Ruthenium (II) complexes containing bidentate Schiff bases and their antifungal activity. Transition Met. Chem. 2001, 26, 105–109; https://doi.org/10.1023/a:1007132408648.10.1023/A:1007132408648Search in Google Scholar

Donaldson, P. T. The Textbook of Hepatology: From Basic Science to Clinical Practice, 3rd ed.; John Wiley & Sons: Oxford, UK, 2008.Search in Google Scholar

Echevarria, A.; Nascimento, M. D. G.; Gerônimo, V.; Miller, J.; Giesbrecht, A. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal. J. Braz. Chem. Soc. 1999, 10, 60–64; https://doi.org/10.1590/s0103-50531999000100010.Search in Google Scholar

Ejidike, I. P.; Ajibade, P. A. Synthesis, characterization and biological studies of metal (II) complexes of (3E)-3-[(2-{(E)-[1-(2, 4-dihydroxyphenyl) ethylidene] amino} ethyl) imino]-1-phenylbutan-1-one Schiff base. Molecules 2015a, 20, 9788–9802; https://doi.org/10.3390/molecules20069788.Search in Google Scholar PubMed PubMed Central

Ejidike, I. P.; Ajibade, P. A. Transition metal complexes of symmetrical and asymmetrical Schiff bases as antibacterial, antifungal, antioxidant, and anticancer agents: progress and prospects. Rev. Inorg. Chem. 2015b, 35, 191–224; https://doi.org/10.1515/revic-2015-0007.Search in Google Scholar

El-Sherif, A. A.; Eldebss, T. M. A. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene. Spectrochim. Acta Mol. Biomol. Spectrosc. 2011, 79, 1803–1814; https://doi.org/10.1016/j.saa.2011.05.062.Search in Google Scholar PubMed

El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Abou-Dobara, M. I.; Seyam, H. A. Molecular docking, DNA binding, thermal studies and antimicrobial activities of Schiff base complexes. J. Mol. Liq. 2016, 218, 434–456; https://doi.org/10.1016/j.molliq.2016.02.072.Search in Google Scholar

Fareed, G.; Versiani, M. A.; Afza, N.; Fareed, N.; Iqbal, L.; Lateef, M. Structure activity relationship: antioxidant potential of some novel Schiff bases containing benzophenone moiety. Int. J. Curr. Pharmaceut. Res. 2013, 5, 61–64.Search in Google Scholar

Filipović, N. R.; Marković, I.; Mitić, D.; Polović, N.; Milčić, M.; Dulović, M.; Jovanović, M.; Savić, M.; Nikšić, M.; Anđelković, K.; Todorović, T. A comparative study of in vitro cytotoxic, antioxidant, and antimicrobial activity of Pt(II), Zn(II), Cu(II), and Co(III) complexes with N-heteroaromatic Schiff base (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetate. J. Biochem. Mol. Toxicol. 2014, 28, 99–110; https://doi.org/10.1002/jbt.21541.Search in Google Scholar PubMed

Fonkui, T. Y.; Ikhile, M. I.; Ndinteh, D. T.; Njobeh, P. B. Microbial activity of some heterocyclic Schiff bases and metal complexes: a review. Trop. J. Pharmaceut. Res. 2018, 17, 2507–2518.10.4314/tjpr.v17i12.29Search in Google Scholar

Gaballa, A. S.; Asker, M. S.; Barakat, A. S.; Teleb, S. M. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine. Spectrochim. Acta Mol. Biomol. Spectrosc. 2007, 67, 114–121; https://doi.org/10.1016/j.saa.2006.06.031.Search in Google Scholar PubMed

Gaber, M.; El-Ghamry, H. A.; Fathalla, S. K. Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 139, 396–404; https://doi.org/10.1016/j.saa.2014.12.057.Search in Google Scholar PubMed

Ghorab, M. M.; Shaaban, M. A.; Refaat, H. M.; Heiba, H. I.; Ibrahim, S. S. Anticancer and radiosensitizing evaluation of some new pyranothiazole-Schiff bases bearing the biologically active sulfonamide moiety. Eur. J. Med. Chem. 2012, 53, 403–407; https://doi.org/10.1016/j.ejmech.2012.04.009.Search in Google Scholar PubMed

Ghosh, P.; Dey, S.; Ara, M.; Karim, K.; Islam, A. B. M. N. A review on synthesis and versatile applications of some selected Schiff bases with their transition metal complexes. Egypt. J. Chem. 2019, 62(Special Issue (Part 2) Innovation in Chemistry), 523–547 https://doi.org/10.21608/ejchem.2019.13741.1852.Search in Google Scholar

Golbedaghi, R.; Tabanez, A. M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic Schiff base ligands and their metal complexes: a survey of the literature (2005–2019). Appl. Organomet. Chem. 2020, 34, e5884; https://doi.org/10.1002/aoc.5884.Search in Google Scholar

Gou, Y.; Li, J.; Fan, B.; Xu, B.; Zhou, M.; Yang, F. Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents. Eur. J. Med. Chem. 2017, 134, 207–217; https://doi.org/10.1016/j.ejmech.2017.04.026.Search in Google Scholar PubMed

Gülcan, M.; Sönmez, M.; Berber, İ. Synthesis, characterization, and antimicrobial activity of a new pyrimidine Schiff base and its Cu (II), Ni (II), Co (II), Pt (II), and Pd (II) complexes. Turk. J. Chem. 2012, 36, 189–200.10.3906/kim-1104-2Search in Google Scholar

Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L.; Li, P. Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr. Res. 2007, 342, 1329–1332; https://doi.org/10.1016/j.carres.2007.04.006.Search in Google Scholar PubMed

Halliwell, B.; Gutteridge, J. M. Free radicals in biology and medicine; Oxford University Press: USA, 2015.10.1093/acprof:oso/9780198717478.001.0001Search in Google Scholar

Hameed, A.; Al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K. M. Schiff bases in medicinal chemistry: a review (2010–2015). Expert Opin. Ther. Pat. 2017, 27, 63–79; https://doi.org/10.1080/13543776.2017.1252752.Search in Google Scholar PubMed

Hasnaoui, A.; Hdoufane, I.; Idouhli, R.; Therrien, B.; Ait Ali, M.; El Firdoussi, L. Crystal structure of {N-(2-hydroxyethylamino) ethylsalicylaldiminato]-palladium(II) chloride}: synthesis, X-ray structure, electrochemistry, DFT and TDDFT studies. J. Mol. Struct. 2019, 1176, 703–710; https://doi.org/10.1016/j.molstruc.2018.08.111.Search in Google Scholar

Hassanpour, S. H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017, 4, 127–129; https://doi.org/10.1016/j.jcrpr.2017.07.001.Search in Google Scholar

Hossain, M.; Voon, L. H. Mixed-ligand Ni (II), Co (II) and Fe (II) complexes as catalysts for esterification of biomass-derived levulinic acid with polyol and in situ reduction via hydrogenation with NaBH4. J. Renew.Mater. 2019, 7, 731–748; https://doi.org/10.32604/jrm.2019.04703.Search in Google Scholar

Hossain, M. M.; Bashar, M. A.; Khan, M. N.; Roy, P. K.; Mannan, M. A.; Ali, M. S.; Farooque, M. A. Selected Schiff base coordination complexes and their microbial application: a review. Int. J. Chem. Stud 2018a, 6, 19–31; https://doi.org/10.11648/j.ajac.20180604.13.Search in Google Scholar

Hossain, M. M.; Bashar, M. A.; Khan, M. N.; Roy, P. K.; Mannan, M. A.; Ali, M. S.; Farooque, M. A. Physical and spectral characterization of Ni (II) Cu (II) Co (II) and Cd (II) complexes with Schiff base of salicylaldehyde and 2-aminopyridine towards potential microbial application. Am. J. Appl. Chem. 2018b, 6, 147–155; https://doi.org/10.11648/j.ajac.20180604.13.Search in Google Scholar

Hranjec, M.; Starčević, K.; Pavelić, S. K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Synthesis, spectroscopic characterization and antiproliferative evaluation in vitro of novel Schiff bases related to benzimidazoles. Eur. J. Med. Chem. 2011, 46, 2274–2279; https://doi.org/10.1016/j.ejmech.2011.03.008.Search in Google Scholar PubMed

Huang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Cu (I)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions. Tetrahedron Lett. 2013, 54, 2861–2864; https://doi.org/10.1016/j.tetlet.2013.03.098.Search in Google Scholar

Hyndman, I. J. The contribution of both nature and nurture to carcinogenesis and progression in solid tumours. Cancer Microenviron. 2016, 9, 63–69; https://doi.org/10.1007/s12307-016-0183-4.Search in Google Scholar PubMed PubMed Central

Ibrahim, M.; Khan, A.; Ikram, M.; Rehman, S.; Shah, M.; Nabi, H.; Ahuchaogu, A. In Vitro antioxidant properties of novel Schiff base complexes. Asian J. Chem. Sci. 2017, 2, 1–12; https://doi.org/10.9734/ajocs/2017/32244.Search in Google Scholar

Ibrahim, D. H.; Saleem, A. J.; Awad, A. A.; Ahmed, H. S.; Shneshil, M. K. Antioxidant and antibacterial activity of some 2-amino-1, 3, 4-thiadiazole Schiff’s bases. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, Vol. 1294, 2019; p. 052029.10.1088/1742-6596/1294/5/052029Search in Google Scholar

Ismail, B. A.; Nassar, D. A.; Abd El–Wahab, Z. H.; Ali, O. A. M. Synthesis, characterization, thermal, DFT computational studies and anticancer activity of furfural-type Schiff base complexes. J. Mol. Struct. 2021, 1227, 129393; https://doi.org/10.1016/j.molstruc.2020.129393.Search in Google Scholar

Jean, S.; Cormier, K.; Patterson, A. E.; Vogels, C. M.; Decken, A.; Robichaud, G. A.; Turcotte, S.; Westcott, S. A. Synthesis, characterization, and anticancer properties of organometallic Schiff base platinum complexes. Can. J. Chem. 2015, 93, 1140–1146; https://doi.org/10.1139/cjc-2015-0157.Search in Google Scholar

Jiang, L.; Jin, L.; Tian, H.; Yuan, X.; Yu, X.; Xu, Q. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions. Chem. Commun. 2011, 47, 10833–10835; https://doi.org/10.1039/c1cc14242a.Search in Google Scholar PubMed

Kalaivani, S.; Priya, N. P.; Arunachalam, S. Schiff bases: facile synthesis, spectral characterization and biocidal studies. Int. J. Appl. Biol. Pharmaceut. Technol. 2012, 3, 219–223.Search in Google Scholar

Kargar, H.; Adabi Ardakani, A.; Munawar, K. S.; Ashfaq, M.; Tahir, M. N. Nickel(II), copper(II) and zinc(II) complexes containing symmetrical tetradentate Schiff base ligand derived from 3,5-diiodosalicylaldehyde: synthesis, characterization, crystal structure and antimicrobial activity. J. Iran. Chem. Soc. 2021a, 18, 2493–2503; https://doi.org/10.1007/s13738-021-02207-x.Search in Google Scholar

Kargar, H.; Aghaei-Meybodi, F.; Elahifard, M. R.; Tahir, M. N.; Ashfaq, M.; Munawar, K. S. Some new Cu(II) complexes containing O,N-donor Schiff base ligands derived from 4-aminoantipyrine: synthesis, characterization, crystal structure and substitution effect on antimicrobial activity. J. Coord. Chem. 2021b, 74, 1534–1549; https://doi.org/10.1080/00958972.2021.1900831.Search in Google Scholar

Karthikeyan, M. S.; Prasad, D. J.; Poojary, B.; Subrahmanya Bhat, K.; Holla, B. S.; Kumari, N. S. Synthesis and biological activity of Schiff and Mannich bases bearing 2, 4-dichloro-5-fluorophenyl moiety. Bioorg. Med. Chem. 2006, 14, 7482–7489; https://doi.org/10.1016/j.bmc.2006.07.015.Search in Google Scholar PubMed

Katwal, R.; Kaur, H.; Kapur, B. K. Applications of copper—Schiff’s base complexes: a review. Sci. Rev. Chem. Commun. 2013, 3, 1–15.Search in Google Scholar

Kayser, O.; Kiderlen, A. F.; Croft, S. L. Natural products as potential antiparasitic drugs. Stud. Nat. Prod. Chem. 2002, 26, 779–848; https://doi.org/10.1016/s1572-5995(02)80019-9.Search in Google Scholar

Khungar, B.; Rao, M. S.; Pericherla, K.; Nehra, P.; Jain, N.; Panwar, J.; Kumar, A. Synthesis, characterization and microbiocidal studies of novel ionic liquid tagged Schiff bases. Compt. Rendus Chem. 2012, 15, 669–674; https://doi.org/10.1016/j.crci.2012.05.023.Search in Google Scholar

Kigoshi, S.; Kanazawa, A.; Kanaoka, S.; Aoshima, S. Structure–property relationship of phenoxyimine ligands/metal chloride initiating systems for controlled cationic polymerizations of alkyl vinyl ethers. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2021–2029; https://doi.org/10.1002/pola.29458.Search in Google Scholar

Kim, S. New and emerging factors in tumorigenesis: an overview. Cancer Manag. Res. 2015, 7, 225; https://doi.org/10.2147/cmar.s47797.Search in Google Scholar

Kumaravel, G.; Utthra, P. P.; Raman, N. DNA fastening and scission actions of Cu(II), Co(II), Ni(II) and Zn(II) complexes: synthesis, spectral characterization and cytotoxic study. Appl. Organomet. Chem. 2018, 32, e4010; https://doi.org/10.1002/aoc.4010.Search in Google Scholar

Langheld, K. Über das Verhalten von α‐Aminosäuren gegen Natriumhypochlorit. Ber. Dtsch. Chem. Ges. 1909, 42, 2360–2374; https://doi.org/10.1002/cber.190904202134.Search in Google Scholar

Le Thuy, T.; Xuan Tien, H.; Dinh Hoang, V.; Khac Vu, T. Design, synthesis and in vitro antimalarial evaluation of new quinolinylhydrazone derivatives. Lett. Drug Des. Discov. 2012, 9, 163–168.10.2174/157018012799079815Search in Google Scholar

Li, L.-J.; Wang, C.; Tian, C.; Yang, X.-Y.; Hua, X.-X.; Du, J.-L. Water-soluble platinum (II) complexes of reduced amino acid Schiff bases: synthesis, characterization, and antitumor activity. Res. Chem. Intermed. 2013, 39, 733–746; https://doi.org/10.1007/s11164-012-0593-y.Search in Google Scholar

Li, Y.; Yang, Z.-Y.; Wu, J.-C. Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone. Eur. J. Med. Chem. 2010, 45, 5692–5701; https://doi.org/10.1016/j.ejmech.2010.09.025.Search in Google Scholar PubMed

Look, G. C.; Murphy, M. M.; Campbell, D. A.; Gallop, M. A. Trimethylorthoformate: a mild and effective dehydrating reagent for solution and solid phase imine formation. Tetrahedron Lett. 1995, 36, 2937–2940; https://doi.org/10.1016/0040-4039(95)00442-f.Search in Google Scholar

Love, B. E.; Ren, J. Synthesis of sterically hindered imines. J. Org. Chem. 1993, 58, 5556–5557; https://doi.org/10.1021/jo00072a051.Search in Google Scholar

Maggi, A.; Madsen, R. Dehydrogenative synthesis of imines from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. Organometallics 2012, 31, 451–455; https://doi.org/10.1021/om201095m.Search in Google Scholar

Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y.; Hashmi, A. A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 2018, 9, 409–436; https://doi.org/10.1039/c7md00526a.Search in Google Scholar PubMed PubMed Central

Malik, S.; Ghosh, S.; Jain, B.; Singh, A.; Bhattacharya, M. Synthesis, characterization, and biological evaluation of some 3d-metal complexes of Schiff base derived from xipamide drug. Int. J. Inorg. Chem. 2013, 2013, 1–6; https://doi.org/10.1155/2013/549805.Search in Google Scholar

Martins, C.; da Silva, D. L.; Neres, A. T. M.; Magalhaes, T. F. F.; Watanabe, G. A.; Modolo, L. V.; Sabino, A. A.; de Fatima, A.; de Resende, M. A. Curcumin as a promising antifungal of clinical interest. J. Antimicrob. Chemother. 2009, 63, 337–339; https://doi.org/10.1093/jac/dkn488.Search in Google Scholar PubMed

Matela, G. Schiff bases and complexes: a review on anti-cancer activity. Anti Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Anti Cancer Agents) 2020, 20, 1908–1917; https://doi.org/10.2174/1871520620666200507091207.Search in Google Scholar PubMed

McGinley, J.; McCann, M.; Ni, K.; Tallon, T.; Kavanagh, K.; Devereux, M.; Ma, X.; McKee, V. Imidazole Schiff base ligands: synthesis, coordination complexes and biological activities. Polyhedron 2013, 55, 169–178; https://doi.org/10.1016/j.poly.2013.03.023.Search in Google Scholar

Mishra, A. P.; Mishra, R.; Jain, R.; Gupta, S. Synthesis of new VO (II), Co (II), Ni (II) and Cu (II) complexes with isatin-3-chloro-4-floroaniline and 2-pyridinecarboxylidene-4-aminoantipyrine and their antimicrobial studies. Mycobiology 2012, 40, 20–26; https://doi.org/10.5941/myco.2012.40.1.020.Search in Google Scholar PubMed PubMed Central

Mohamed, R. G.; Elantabli, F. M.; Abdel Aziz, A. A.; Moustafa, H.; El-Medani, S. M. Synthesis, characterization, NLO properties, antimicrobial, CT-DNA binding and DFT modeling of Ni(II), Pd(II), Pt(II), Mo(IV) and Ru(I) complexes with NOS Schiff base. J. Mol. Struct. 2019, 1176, 501–514; https://doi.org/10.1016/j.molstruc.2018.08.113.Search in Google Scholar

Mohammadi, A.; Doctorsafaei, A. H.; Burujeny, S. B.; Rudbari, H. A.; Kordestani, N.; Ayati Najafabadi, S. A. Silver(I) complex with a Schiff base ligand extended waterborne polyurethane: a developed strategy to obtain a highly stable antibacterial dispersion impregnated with in situ formed silver nanoparticles. Chem. Eng. J. 2020, 381, 122776; https://doi.org/10.1016/j.cej.2019.122776.Search in Google Scholar

Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219.Search in Google Scholar

More, M. S.; Joshi, P. G.; Mishra, Y. K.; Khanna, P. K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater. Today Chem. 2019, 14, 100195; https://doi.org/10.1016/j.mtchem.2019.100195.Search in Google Scholar PubMed PubMed Central

Nagesh, G.; Raj, K. M.; Mruthyunjayaswamy, B. Synthesis, characterization, thermal study and biological evaluation of Cu (II), Co (II), Ni (II) and Zn (II) complexes of Schiff base ligand containing thiazole moiety. J. Mol. Struct. 2015, 1079, 423–432; https://doi.org/10.1016/j.molstruc.2014.09.013.Search in Google Scholar

Nair, M. S.; Arish, D.; Joseyphus, R. S. Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes. J. Saudi Chem. Soc. 2012, 16, 83–88; https://doi.org/10.1016/j.jscs.2010.11.002.Search in Google Scholar

Neelakantan, M.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal (II) complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2008, 71, 1599–1609; https://doi.org/10.1016/j.saa.2008.06.008.Search in Google Scholar PubMed

Nemati, L.; Keypour, H.; Shahabadi, N.; Hadidi, S.; William Gable, R. Synthesis, characterization and DNA interaction of a novel Pt(II) macroacyclic Schiff base complex containing the piperazine moiety and its cytotoxicity and molecular docking. J. Mol. Liq. 2021, 337, 116292; https://doi.org/10.1016/j.molliq.2021.116292.Search in Google Scholar

Njogu, E. M.; Omondi, B.; Nyamori, V. O. Silver(I)-pyridinyl Schiff base complexes: synthesis, characterisation and antimicrobial studies. J. Mol. Struct. 2017, 1135, 118–128; https://doi.org/10.1016/j.molstruc.2017.01.061.Search in Google Scholar

Omar, M.; Mohamed, G.; Hindy, A. Transition metal complexes of heterocyclic Schiff base: biological activity, spectroscopic and thermal characterization. J. Therm. Anal. Calorim. 2006, 86, 315–325; https://doi.org/10.1007/s10973-006-7095-3.Search in Google Scholar

Ossowicz, P.; Janus, E.; Schroeder, G.; Rozwadowski, Z. Spectroscopic studies of amino acid ionic liquid-supported Schiff bases. Molecules 2013, 18, 4986–5004; https://doi.org/10.3390/molecules18054986.Search in Google Scholar PubMed PubMed Central

Ossowicz, P.; Janus, E.; Szady-Chełmieniecka, A.; Rozwadowski, Z. Influence of modification of the amino acids ionic liquids on their physico-chemical properties: ionic liquids versus ionic liquids-supported Schiff bases. J. Mol. Liq. 2016, 224, 211–218; https://doi.org/10.1016/j.molliq.2016.09.111.Search in Google Scholar

Pandeya, S.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine. Il Farmaco 1999, 54, 624–628; https://doi.org/10.1016/s0014-827x(99)00075-0.Search in Google Scholar PubMed

Panneerselvam, P.; Nair, R. R.; Vijayalakshmi, G.; Subramanian, E. H.; Sridhar, S. K. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur. J. Med. Chem. 2005, 40, 225–229; https://doi.org/10.1016/j.ejmech.2004.09.003.Search in Google Scholar PubMed

Patil, M. K.; Masand, V. H.; Maldhure, A. K. Schiff base metal complexes precursor for metal oxide nanomaterials: a review. Curr. Nanosci. 2021, 17, 634–645; https://doi.org/10.2174/1573413716999201127112204.Search in Google Scholar

Patterson, A. E.; Miller, J. J.; Miles, B. A.; Stewart, E. L.; Melanson, J.-M. E. J.; Vogels, C. M.; Cockshutt, A. M.; Decken, A.; Morin, P.; Westcott, S. A. Synthesis, characterization and anticancer properties of (salicylaldiminato)platinum(II) complexes. Inorg. Chim. Acta. 2014, 415, 88–94; https://doi.org/10.1016/j.ica.2014.02.028.Search in Google Scholar

Proetto, M.; Liu, W.; Hagenbach, A.; Abram, U.; Gust, R. Synthesis, characterization and in vitro antitumour activity of a series of novel platinum(II) complexes bearing Schiff base ligands. Eur. J. Med. Chem. 2012, 53, 168–175; https://doi.org/10.1016/j.ejmech.2012.03.053.Search in Google Scholar PubMed

Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: a short survey on an evergreen chemistry tool. Molecules 2013, 18, 12264–12289; https://doi.org/10.3390/molecules181012264.Search in Google Scholar PubMed PubMed Central

Radi, S.; Tighadouini, S.; Feron, O.; Riant, O.; Mabkhot, Y. N. Synthesis and evaluation of certain symmetrical Schiff bases as inhibitors of MDA-MB-241 human breast cancer cell proliferation. Lett. Drug Des. Discov. 2016, 13, 205–209; https://doi.org/10.2174/1570180812999150812165510.Search in Google Scholar

Ramadan, R. M.; El‐Medani, S. M.; Makhlouf, A.; Moustafa, H.; Afifi, M. A.; Haukka, M.; Abdel Aziz, A. Spectroscopic, density functional theory, nonlinear optical properties and in vitro biological studies of Co(II), Ni(II), and Cu(II) complexes of hydrazide Schiff base derivatives. Appl. Organomet. Chem. 2021, 35, e6246; https://doi.org/10.1002/aoc.6246.Search in Google Scholar

Rathelot, P.; Vanelle, P.; Gasquet, M.; Delmas, F.; Crozet, M.; Timon-David, P.; Maldonado, J. Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. Eur. J. Med. Chem. 1995, 30, 503–508; https://doi.org/10.1016/0223-5234(96)88261-4.Search in Google Scholar

Rauf, A.; Shah, A.; Munawar, K. S.; Khan, A. A.; Abbasi, R.; Yameen, M. A.; Khan, A. M.; Khan, A. R.; Qureshi, I. Z.; Kraatz, H.-B.; Zia-ur-Rehman Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal (II) complexes. J. Mol. Struct. 2017, 1145, 132–140; https://doi.org/10.1016/j.molstruc.2017.05.098.Search in Google Scholar

Rauf, A.; Shah, A.; Munawar, K. S.; Ali, S.; Nawaz Tahir, M.; Javed, M.; Khan, A. M. Synthesis, physicochemical elucidation, biological screening and molecular docking studies of a Schiff base and its metal(II) complexes. Arabian J. Chem. 2020, 13, 1130–1141; https://doi.org/10.1016/j.arabjc.2017.09.015.Search in Google Scholar

Reddelien, G. Über die Zersetzung von Anilen. (Über die katalytische Wirkungsweise von Halogenwasserstoffsäuren bei Kondensationen, II). Ber. Dtsch. Chem. Ges. 1920, 53, 355–358; https://doi.org/10.1002/cber.19200530233.Search in Google Scholar

Rehman, W.; Baloch, M. K.; Muhammad, B.; Badshah, A.; Khan, K. M. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (IV) complexes. Chin. Sci. Bull. 2004, 49, 119–122; https://doi.org/10.1360/03wb0174.Search in Google Scholar

Rezki, N.; Al-Sodies, S. A.; Messali, M.; Bardaweel, S. K.; Sahu, P. K.; Al-blewi, F. F.; Sahu, P. K.; Aouad, M. R. Identification of new pyridinium ionic liquids tagged with Schiff bases: design, synthesis, in silico ADMET predictions and biological evaluations. J. Mol. Liq. 2018, 264, 367–374; https://doi.org/10.1016/j.molliq.2018.05.071.Search in Google Scholar

Rice, L. B. Unmet medical needs in antibacterial therapy. Biochem. Pharmacol. 2006, 71, 991–995; https://doi.org/10.1016/j.bcp.2005.09.018.Search in Google Scholar PubMed

Sacconi, L.; Ciampolini, M.; Maggio, F.; Cavasino, F. P. Studies in coordination chemistry. IX. 1 investigation of the stereochemistry of some complex compounds of cobalt (II) with N-substituted salicylaldimines. J. Am. Chem. Soc. 1962, 84, 3246–3248; https://doi.org/10.1021/ja00876a005.Search in Google Scholar

Saha, S.; Basak, G.; Sinha, B. Physico-chemical characterization and biological studies of newly synthesized metal complexes of an ionic liquid-supported Schiff base: 1-{2-[(2-hydroxy-5-bromobenzylidene)amino]ethyl}-3-ethylimidazolium tetrafluoroborate. J. Chem. Sci. 2018, 130, 9; https://doi.org/10.1007/s12039-017-1409-9.Search in Google Scholar

Şakıyan, İ.; Özdemir, R.; Öğütcü, H. Synthesis, characterization, and antimicrobial activities of new N-(2-hydroxy-1-naphthalidene)-amino acid (L-Tyrosine, L-Arginine, and L-Lysine) Schiff bases and their manganese(III) complexes. Synth React Inorg Met Nano Met Chem 2014, 44, 417–423; doi: https://doi.org/10.1080/15533174.2013.776604, in this issue.10.1080/15533174.2013.776604Search in Google Scholar

Salama, H. E.; Saad, G. R.; Sabaa, M. W. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety. Int. J. Biol. Macromol. 2015, 79, 996–1003; https://doi.org/10.1016/j.ijbiomac.2015.06.009.Search in Google Scholar PubMed

Serag, W. M.; Zahran, F.; Abdelghany, Y. M.; Elshaarawy, R. F. M.; Abdelhamid, M. S. Synthesis and molecular docking of hybrids ionic azole Schiff bases as novel CDK1 inhibitors and anti-breast cancer agents: in vitro and in vivo study. J. Mol. Struct. 2021, 1245, 131041; https://doi.org/10.1016/j.molstruc.2021.131041.Search in Google Scholar

Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S. Synthesis, characterization, and biological evaluation of Schiff base–platinum(II) complexes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 145, 213–222; https://doi.org/10.1016/j.saa.2015.02.030.Search in Google Scholar PubMed

Shneshil, M. K.; Saleem, A. J. Synthesis and anti-bacterial activity of some novel Schiff’s bases. Biochem. Cell. Arch. 2018, 18, 643–647.Search in Google Scholar

Shukla, S.; Srivastava, R. S.; Shrivastava, S. K.; Sodhi, A.; Kumar, P. Synthesis, characterization, in vitro anticancer activity, and docking of Schiff bases of 4-amino-1, 2-naphthoquinone. Med. Chem. Res. 2013, 22, 1604–1617; https://doi.org/10.1007/s00044-012-0150-7.Search in Google Scholar

Soliman, A. A.; Mohamed, G. G. Study of the ternary complexes of copper with salicylidene-2-aminothiophenol and some amino acids in the solid state. Thermochim. Acta 2004, 421, 151–159; https://doi.org/10.1016/j.tca.2004.03.010.Search in Google Scholar

Solomons, T. G.; Fryhle, C. B.; Snyder, S. A. Organic Chemistry, 12e Binder Ready Version Study Guide & Student Solutions Manual; John Wiley & Sons: New York, US, 2016.Search in Google Scholar

Sönmez, M.; Berber, İ.; Akbaş, E. Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. Eur. J. Med. Chem. 2006, 41, 101–105.10.1016/j.ejmech.2005.10.003Search in Google Scholar PubMed

Soundaranayaki, V.; Kulandaisamy, A.; Arunadevi, A. Synthesis, structural, pharmacological and molecular docking simulations studies of some transition metal complexes. Inorg. Chem. Commun. 2020, 122, 108271; https://doi.org/10.1016/j.inoche.2020.108271.Search in Google Scholar

Souza, A. O. D.; Galetti, F. C. S.; Silva, C. L.; Bicalho, B.; Parma, M. M.; Fonseca, S. F.; Marsaioli, A. J.; Trindade, A. C. L. B.; Gil, R. P. F.; Bezerra, F. S.; Andrade-Neto, M.; Oliveira, M. C. F. D. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quím. Nova 2007, 30, 1563–1566; https://doi.org/10.1590/s0100-40422007000700012.Search in Google Scholar

Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) complexes containing Schiff-base ligands: a promising source for antitumor treatment. Eur. J. Med. Chem. 2021, 211, 113098; https://doi.org/10.1016/j.ejmech.2020.113098.Search in Google Scholar PubMed

Sundriyal, S.; Sharma, R. K.; Jain, R. Current advances in antifungal targets and drug development. Curr. Med. Chem. 2006, 13, 1321–1335; https://doi.org/10.2174/092986706776873023.Search in Google Scholar PubMed

Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem. 2013, 21, 3648–3666; https://doi.org/10.1016/j.bmc.2013.04.037.Search in Google Scholar PubMed

Tawfeeq, H. M.; Muslim, R. F.; Abid, O. H.; Owaid, M. N. Synthesis and characterization of novel tetrazole derivatives and evaluation of their anti-candidal activity. Acta Pharm. Sci. 2019, 57, 45; https://doi.org/10.23893/1307-2080.aps.05717.Search in Google Scholar

Uddin, N.; Rashid, F.; Ali, S.; Tirmizi, S. A.; Ahmad, I.; Zaib, S.; Zubair, M.; Diaconescu, P. L.; Tahir, M. N.; Iqbal, J.; Haider, A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020, 38, 3246–3259; https://doi.org/10.1080/07391102.2019.1654924.Search in Google Scholar PubMed

Verma, C.; Quraishi, M. A. Recent progresses in Schiff bases as aqueous phase corrosion inhibitors: design and applications. Coord. Chem. Rev. 2021, 446, 214105; https://doi.org/10.1016/j.ccr.2021.214105.Search in Google Scholar

Vinusha, H. M.; Kollur, S. P.; Begum, M.; Shivamallu, C.; Ramu, R.; Shirahatti, P. S.; Prasad, N.; Veerapur, R.; Ortega-Castro, J.; Frau, J.; Flores-Holguín, N.; Glossman-Mitnik, D. Chemical synthesis, in vitro biological evaluation and theoretical investigations of transition metal complexes derived from 2-(((5-mercapto-1H-pyrrol-2-yl)imino) methyl)6-methoxyphenol. J. Mol. Struct. 2021, 1244, 130920; https://doi.org/10.1016/j.molstruc.2021.130920.Search in Google Scholar

Virnig, B. A.; Baxter, N. N.; Habermann, E. B.; Feldman, R. D.; Bradley, C. J. A matter of race: early-versus late-stage cancer diagnosis. Health Aff. 2009, 28, 160–168; https://doi.org/10.1377/hlthaff.28.1.160.Search in Google Scholar PubMed PubMed Central

Wang, L.-H.; Qiu, X.-Y.; Liu, S.-J. Synthesis, characterization and crystal structures of copper(II), zinc(II) and vanadium(V) complexes, derived from 3-methyl-N′-(1-(pyridin-2-yl)ethylidene)benzohydrazide, with antibacterial activity. J. Coord. Chem. 2019, 72, 962–971; https://doi.org/10.1080/00958972.2019.1590561.Search in Google Scholar

Yamada, S. Advancement in stereochemical aspects of Schiff base metal complexes. Coord. Chem. Rev. 1999, 190–192, 537–555; https://doi.org/10.1016/s0010-8545(99)00099-5.Search in Google Scholar

Yehye, W. A.; Abdul Rahman, N.; Saad, O.; Ariffin, A.; Abd Hamid, S.; Alhadi, A.; Kadir, F.; Yaeghoobi, M.; Matlob, A. Rational design and synthesis of new, high efficiency, multipotent Schiff base-1, 2, 4-triazole antioxidants bearing butylated hydroxytoluene moieties. Molecules 2016, 21, 847; https://doi.org/10.3390/molecules21070847.Search in Google Scholar PubMed PubMed Central

Yernale, N. G.; Bennikallu Hire Mathada, M. Preparation of octahedral Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from 8-formyl-7-hydroxy-4-methyl coumarin: synthesis, characterization and biological study. J. Mol. Struct. 2020, 1220, 128659; https://doi.org/10.1016/j.molstruc.2020.128659.Search in Google Scholar

Zangade, S. B.; Shinde, A.; Shinde, A.; Chavan, S.; Chavan, S.; Vibhute, Y.; Vibhute, Y. Solvent-free, environmentally benign syntheses of some imines and antioxidant activity. Orbital - Electron. J. Chem. 2015, 7, 208–214; https://doi.org/10.17807/orbital.v7i3.608.Search in Google Scholar

Zehra, S.; Shavez Khan, M.; Ahmad, I.; Arjmand, F. New tailored substituted benzothiazole Schiff base Cu (II)/Zn (II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. J. Biomol. Struct. Dyn. 2019, 37, 1863–1879; https://doi.org/10.1080/07391102.2018.1467794.Search in Google Scholar PubMed

Zhao, Y.; Li, Z.; Li, H.; Wang, S.; Niu, M. Synthesis, crystal structure, DNA binding and in vitro cytotoxicity studies of Zn(II) complexes derived from amino-alcohol Schiff-bases. Inorg. Chim. Acta. 2018, 482, 136–143; https://doi.org/10.1016/j.ica.2018.06.008.Search in Google Scholar

Received: 2021-09-16
Accepted: 2021-10-27
Published Online: 2021-11-10
Published in Print: 2022-12-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2021-0034/html
Scroll to top button